/* BEGIN_HEADER */ #include "mbedtls/pk.h" /* For error codes */ #include "mbedtls/asn1.h" #include "mbedtls/base64.h" #include "mbedtls/ecp.h" #include "mbedtls/rsa.h" #include "pk_internal.h" #include "hash_info.h" #include #include /* Needed only for test case data under #if defined(MBEDTLS_USE_PSA_CRYPTO), * but the test code generator requires test case data to be valid C code * unconditionally (https://github.com/Mbed-TLS/mbedtls/issues/2023). */ #include "psa/crypto.h" /* Used for properly sizing the key buffer in pk_genkey_ec() */ #include "mbedtls/psa_util.h" #define RSA_KEY_SIZE 512 #define RSA_KEY_LEN 64 #if defined(MBEDTLS_USE_PSA_CRYPTO) && defined(MBEDTLS_ECP_LIGHT) static int pk_genkey_ec(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q) { psa_status_t status; psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; size_t curve_bits; psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(grp->id, &curve_bits); unsigned char key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH]; size_t key_len; int ret; psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve)); psa_set_key_bits(&key_attr, curve_bits); psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT); status = psa_generate_key(&key_attr, &key_id); if (status != PSA_SUCCESS) { return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; } status = psa_export_key(key_id, key_buf, sizeof(key_buf), &key_len); if (status != PSA_SUCCESS) { ret = MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; goto exit; } ret = mbedtls_mpi_read_binary(d, key_buf, key_len); if (ret != 0) { goto exit; } status = psa_export_public_key(key_id, key_buf, sizeof(key_buf), &key_len); if (status != PSA_SUCCESS) { ret = MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; goto exit; } ret = mbedtls_ecp_point_read_binary(grp, Q, key_buf, key_len); exit: psa_destroy_key(key_id); return ret; } #endif /* MBEDTLS_USE_PSA_CRYPTO && MBEDTLS_ECP_LIGHT */ /** Generate a key of the desired type. * * \param pk The PK object to fill. It must have been initialized * with mbedtls_pk_setup(). * \param parameter - For RSA keys, the key size in bits. * - For EC keys, the curve (\c MBEDTLS_ECP_DP_xxx). * * \return The status from the underlying type-specific key * generation function. * \return -1 if the key type is not recognized. */ static int pk_genkey(mbedtls_pk_context *pk, int parameter) { ((void) pk); (void) parameter; #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME) if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_RSA) { return mbedtls_rsa_gen_key(mbedtls_pk_rsa(*pk), mbedtls_test_rnd_std_rand, NULL, parameter, 3); } #endif #if defined(MBEDTLS_ECP_LIGHT) if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_ECKEY || mbedtls_pk_get_type(pk) == MBEDTLS_PK_ECKEY_DH || mbedtls_pk_get_type(pk) == MBEDTLS_PK_ECDSA) { int ret; if ((ret = mbedtls_ecp_group_load(&mbedtls_pk_ec_rw(*pk)->grp, parameter)) != 0) { return ret; } #if defined(MBEDTLS_USE_PSA_CRYPTO) return pk_genkey_ec(&mbedtls_pk_ec_rw(*pk)->grp, &mbedtls_pk_ec_rw(*pk)->d, &mbedtls_pk_ec_rw(*pk)->Q); #endif /* MBEDTLS_USE_PSA_CRYPTO */ #if defined(MBEDTLS_ECP_C) return mbedtls_ecp_gen_keypair(&mbedtls_pk_ec_rw(*pk)->grp, &mbedtls_pk_ec_rw(*pk)->d, &mbedtls_pk_ec_rw(*pk)->Q, mbedtls_test_rnd_std_rand, NULL); #endif /* MBEDTLS_ECP_C */ } #endif /* MBEDTLS_ECP_LIGHT */ return -1; } #if defined(MBEDTLS_RSA_C) int mbedtls_rsa_decrypt_func(void *ctx, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len) { return mbedtls_rsa_pkcs1_decrypt((mbedtls_rsa_context *) ctx, mbedtls_test_rnd_std_rand, NULL, olen, input, output, output_max_len); } int mbedtls_rsa_sign_func(void *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig) { ((void) f_rng); ((void) p_rng); return mbedtls_rsa_pkcs1_sign((mbedtls_rsa_context *) ctx, mbedtls_test_rnd_std_rand, NULL, md_alg, hashlen, hash, sig); } size_t mbedtls_rsa_key_len_func(void *ctx) { return ((const mbedtls_rsa_context *) ctx)->len; } #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * Generate an ECC key using PSA and return the key identifier of that key, * or 0 if the key generation failed. * The key uses NIST P-256 and is usable for signing with SHA-256. */ mbedtls_svc_key_id_t pk_psa_genkey_ecc(void) { mbedtls_svc_key_id_t key; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; const psa_key_type_t type = PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1); const size_t bits = 256; psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256)); psa_set_key_type(&attributes, type); psa_set_key_bits(&attributes, bits); PSA_ASSERT(psa_generate_key(&attributes, &key)); exit: return key; } /* * Generate an RSA key using PSA and return the key identifier of that key, * or 0 if the key generation failed. */ mbedtls_svc_key_id_t pk_psa_genkey_rsa(void) { mbedtls_svc_key_id_t key; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; const psa_key_type_t type = PSA_KEY_TYPE_RSA_KEY_PAIR; const size_t bits = 1024; psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_SIGN_RAW); psa_set_key_type(&attributes, type); psa_set_key_bits(&attributes, bits); PSA_ASSERT(psa_generate_key(&attributes, &key)); exit: return key; } #endif /* MBEDTLS_USE_PSA_CRYPTO */ /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_PK_C * END_DEPENDENCIES */ /* BEGIN_CASE depends_on:MBEDTLS_USE_PSA_CRYPTO */ void pk_psa_utils(int key_is_rsa) { mbedtls_pk_context pk, pk2; mbedtls_svc_key_id_t key; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; const char * const name = "Opaque"; size_t bitlen; mbedtls_md_type_t md_alg = MBEDTLS_MD_NONE; unsigned char b1[1], b2[1]; size_t len; mbedtls_pk_debug_item dbg; mbedtls_pk_init(&pk); mbedtls_pk_init(&pk2); USE_PSA_INIT(); TEST_ASSERT(psa_crypto_init() == PSA_SUCCESS); TEST_ASSERT(mbedtls_pk_setup_opaque(&pk, MBEDTLS_SVC_KEY_ID_INIT) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); mbedtls_pk_free(&pk); mbedtls_pk_init(&pk); if (key_is_rsa) { bitlen = 1024; /* hardcoded in genkey() */ key = pk_psa_genkey_rsa(); } else { bitlen = 256; /* hardcoded in genkey() */ key = pk_psa_genkey_ecc(); } if (mbedtls_svc_key_id_is_null(key)) { goto exit; } TEST_ASSERT(mbedtls_pk_setup_opaque(&pk, key) == 0); TEST_ASSERT(mbedtls_pk_get_type(&pk) == MBEDTLS_PK_OPAQUE); TEST_ASSERT(strcmp(mbedtls_pk_get_name(&pk), name) == 0); TEST_ASSERT(mbedtls_pk_get_bitlen(&pk) == bitlen); TEST_ASSERT(mbedtls_pk_get_len(&pk) == bitlen / 8); if (key_is_rsa) { TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_ECKEY) == 0); TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_ECDSA) == 0); TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_RSA) == 1); } else { TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_ECKEY) == 1); TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_ECDSA) == 1); TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_RSA) == 0); } /* unsupported operations: verify, decrypt, encrypt */ TEST_ASSERT(mbedtls_pk_verify(&pk, md_alg, b1, sizeof(b1), b2, sizeof(b2)) == MBEDTLS_ERR_PK_TYPE_MISMATCH); if (key_is_rsa == 0) { TEST_ASSERT(mbedtls_pk_decrypt(&pk, b1, sizeof(b1), b2, &len, sizeof(b2), NULL, NULL) == MBEDTLS_ERR_PK_TYPE_MISMATCH); } TEST_ASSERT(mbedtls_pk_encrypt(&pk, b1, sizeof(b1), b2, &len, sizeof(b2), NULL, NULL) == MBEDTLS_ERR_PK_TYPE_MISMATCH); /* unsupported functions: check_pair, debug */ if (key_is_rsa) { TEST_ASSERT(mbedtls_pk_setup(&pk2, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); } else { TEST_ASSERT(mbedtls_pk_setup(&pk2, mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY)) == 0); } TEST_ASSERT(mbedtls_pk_check_pair(&pk, &pk2, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_TYPE_MISMATCH); TEST_ASSERT(mbedtls_pk_debug(&pk, &dbg) == MBEDTLS_ERR_PK_TYPE_MISMATCH); /* test that freeing the context does not destroy the key */ mbedtls_pk_free(&pk); TEST_ASSERT(PSA_SUCCESS == psa_get_key_attributes(key, &attributes)); TEST_ASSERT(PSA_SUCCESS == psa_destroy_key(key)); exit: /* * Key attributes may have been returned by psa_get_key_attributes() * thus reset them as required. */ psa_reset_key_attributes(&attributes); mbedtls_pk_free(&pk); /* redundant except upon error */ mbedtls_pk_free(&pk2); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_USE_PSA_CRYPTO */ void pk_can_do_ext(int opaque_key, int key_type, int key_usage, int key_alg, int key_alg2, int parameter, int alg_check, int usage_check, int result) { mbedtls_pk_context pk; mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_pk_init(&pk); USE_PSA_INIT(); if (opaque_key == 1) { psa_set_key_usage_flags(&attributes, key_usage); psa_set_key_algorithm(&attributes, key_alg); if (key_alg2 != 0) { psa_set_key_enrollment_algorithm(&attributes, key_alg2); } psa_set_key_type(&attributes, key_type); psa_set_key_bits(&attributes, parameter); PSA_ASSERT(psa_generate_key(&attributes, &key)); if (mbedtls_svc_key_id_is_null(key)) { goto exit; } TEST_EQUAL(mbedtls_pk_setup_opaque(&pk, key), 0); TEST_EQUAL(mbedtls_pk_get_type(&pk), MBEDTLS_PK_OPAQUE); } else { TEST_EQUAL(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(key_type)), 0); TEST_EQUAL(pk_genkey(&pk, parameter), 0); TEST_EQUAL(mbedtls_pk_get_type(&pk), key_type); } TEST_EQUAL(mbedtls_pk_can_do_ext(&pk, alg_check, usage_check), result); exit: psa_reset_key_attributes(&attributes); PSA_ASSERT(psa_destroy_key(key)); mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE */ void pk_invalid_param() { mbedtls_pk_context ctx; mbedtls_pk_type_t pk_type = 0; unsigned char buf[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }; size_t buf_size = sizeof(buf); mbedtls_pk_init(&ctx); USE_PSA_INIT(); TEST_EQUAL(MBEDTLS_ERR_PK_BAD_INPUT_DATA, mbedtls_pk_verify_restartable(&ctx, MBEDTLS_MD_NONE, NULL, buf_size, buf, buf_size, NULL)); TEST_EQUAL(MBEDTLS_ERR_PK_BAD_INPUT_DATA, mbedtls_pk_verify_restartable(&ctx, MBEDTLS_MD_SHA256, NULL, 0, buf, buf_size, NULL)); TEST_EQUAL(MBEDTLS_ERR_PK_BAD_INPUT_DATA, mbedtls_pk_verify_ext(pk_type, NULL, &ctx, MBEDTLS_MD_NONE, NULL, buf_size, buf, buf_size)); TEST_EQUAL(MBEDTLS_ERR_PK_BAD_INPUT_DATA, mbedtls_pk_verify_ext(pk_type, NULL, &ctx, MBEDTLS_MD_SHA256, NULL, 0, buf, buf_size)); TEST_EQUAL(MBEDTLS_ERR_PK_BAD_INPUT_DATA, mbedtls_pk_sign_restartable(&ctx, MBEDTLS_MD_NONE, NULL, buf_size, buf, buf_size, &buf_size, NULL, NULL, NULL)); TEST_EQUAL(MBEDTLS_ERR_PK_BAD_INPUT_DATA, mbedtls_pk_sign_restartable(&ctx, MBEDTLS_MD_SHA256, NULL, 0, buf, buf_size, &buf_size, NULL, NULL, NULL)); exit: mbedtls_pk_free(&ctx); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE */ void valid_parameters() { mbedtls_pk_context pk; unsigned char buf[1]; size_t len; void *options = NULL; mbedtls_pk_init(&pk); USE_PSA_INIT(); TEST_ASSERT(mbedtls_pk_setup(&pk, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); /* In informational functions, we accept NULL where a context pointer * is expected because that's what the library has done forever. * We do not document that NULL is accepted, so we may wish to change * the behavior in a future version. */ TEST_ASSERT(mbedtls_pk_get_bitlen(NULL) == 0); TEST_ASSERT(mbedtls_pk_get_len(NULL) == 0); TEST_ASSERT(mbedtls_pk_can_do(NULL, MBEDTLS_PK_NONE) == 0); TEST_ASSERT(mbedtls_pk_sign_restartable(&pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof(buf), &len, mbedtls_test_rnd_std_rand, NULL, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_sign_restartable(&pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof(buf), &len, mbedtls_test_rnd_std_rand, NULL, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_sign(&pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof(buf), &len, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_verify_restartable(&pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof(buf), NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof(buf)) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_verify_ext(MBEDTLS_PK_NONE, options, &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof(buf)) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_encrypt(&pk, NULL, 0, NULL, &len, 0, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_decrypt(&pk, NULL, 0, NULL, &len, 0, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); #if defined(MBEDTLS_PK_PARSE_C) TEST_ASSERT(mbedtls_pk_parse_key(&pk, NULL, 0, NULL, 1, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_KEY_INVALID_FORMAT); TEST_ASSERT(mbedtls_pk_parse_public_key(&pk, NULL, 0) == MBEDTLS_ERR_PK_KEY_INVALID_FORMAT); #endif /* MBEDTLS_PK_PARSE_C */ USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PK_WRITE_C */ void valid_parameters_pkwrite(data_t *key_data) { mbedtls_pk_context pk; /* For the write tests to be effective, we need a valid key pair. */ mbedtls_pk_init(&pk); USE_PSA_INIT(); TEST_ASSERT(mbedtls_pk_parse_key(&pk, key_data->x, key_data->len, NULL, 0, mbedtls_test_rnd_std_rand, NULL) == 0); TEST_ASSERT(mbedtls_pk_write_key_der(&pk, NULL, 0) == MBEDTLS_ERR_ASN1_BUF_TOO_SMALL); TEST_ASSERT(mbedtls_pk_write_pubkey_der(&pk, NULL, 0) == MBEDTLS_ERR_ASN1_BUF_TOO_SMALL); #if defined(MBEDTLS_PEM_WRITE_C) TEST_ASSERT(mbedtls_pk_write_key_pem(&pk, NULL, 0) == MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL); TEST_ASSERT(mbedtls_pk_write_pubkey_pem(&pk, NULL, 0) == MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL); #endif /* MBEDTLS_PEM_WRITE_C */ exit: mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE */ void pk_utils(int type, int parameter, int bitlen, int len, char *name) { mbedtls_pk_context pk; mbedtls_pk_init(&pk); USE_PSA_INIT(); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(type)) == 0); TEST_ASSERT(pk_genkey(&pk, parameter) == 0); TEST_ASSERT((int) mbedtls_pk_get_type(&pk) == type); TEST_ASSERT(mbedtls_pk_can_do(&pk, type)); TEST_ASSERT(mbedtls_pk_get_bitlen(&pk) == (unsigned) bitlen); TEST_ASSERT(mbedtls_pk_get_len(&pk) == (unsigned) len); TEST_ASSERT(strcmp(mbedtls_pk_get_name(&pk), name) == 0); exit: mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PK_PARSE_C:MBEDTLS_FS_IO */ void mbedtls_pk_check_pair(char *pub_file, char *prv_file, int ret) { mbedtls_pk_context pub, prv, alt; mbedtls_pk_init(&pub); mbedtls_pk_init(&prv); mbedtls_pk_init(&alt); USE_PSA_INIT(); #if defined(MBEDTLS_USE_PSA_CRYPTO) /* mbedtls_pk_check_pair() returns either PK or ECP error codes depending on MBEDTLS_USE_PSA_CRYPTO so here we dynamically translate between the two */ if (ret == MBEDTLS_ERR_ECP_BAD_INPUT_DATA) { ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA; } #endif TEST_ASSERT(mbedtls_pk_parse_public_keyfile(&pub, pub_file) == 0); TEST_ASSERT(mbedtls_pk_parse_keyfile(&prv, prv_file, NULL, mbedtls_test_rnd_std_rand, NULL) == 0); TEST_ASSERT(mbedtls_pk_check_pair(&pub, &prv, mbedtls_test_rnd_std_rand, NULL) == ret); #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_RSA_ALT_SUPPORT) if (mbedtls_pk_get_type(&prv) == MBEDTLS_PK_RSA) { TEST_ASSERT(mbedtls_pk_setup_rsa_alt(&alt, mbedtls_pk_rsa(prv), mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func) == 0); TEST_ASSERT(mbedtls_pk_check_pair(&pub, &alt, mbedtls_test_rnd_std_rand, NULL) == ret); } #endif mbedtls_pk_free(&pub); mbedtls_pk_free(&prv); mbedtls_pk_free(&alt); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_verify_test_vec(data_t *message_str, int digest, int mod, char *input_N, char *input_E, data_t *result_str, int result) { mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_pk_restart_ctx *rs_ctx = NULL; #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_ctx ctx; rs_ctx = &ctx; mbedtls_pk_restart_init(rs_ctx); // this setting would ensure restart would happen if ECC was used mbedtls_ecp_set_max_ops(1); #endif mbedtls_pk_init(&pk); USE_PSA_INIT(); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); rsa = mbedtls_pk_rsa(pk); rsa->len = mod / 8; TEST_ASSERT(mbedtls_test_read_mpi(&rsa->N, input_N) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&rsa->E, input_E) == 0); TEST_ASSERT(mbedtls_pk_verify(&pk, digest, message_str->x, 0, result_str->x, mbedtls_pk_get_len(&pk)) == result); TEST_ASSERT(mbedtls_pk_verify_restartable(&pk, digest, message_str->x, 0, result_str->x, mbedtls_pk_get_len( &pk), rs_ctx) == result); exit: #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_free(rs_ctx); #endif mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_verify_ext_test_vec(data_t *message_str, int digest, int mod, char *input_N, char *input_E, data_t *result_str, int pk_type, int mgf1_hash_id, int salt_len, int sig_len, int result) { mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_pk_rsassa_pss_options pss_opts; void *options; int ret; mbedtls_pk_init(&pk); MD_OR_USE_PSA_INIT(); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); rsa = mbedtls_pk_rsa(pk); rsa->len = mod / 8; TEST_ASSERT(mbedtls_test_read_mpi(&rsa->N, input_N) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&rsa->E, input_E) == 0); if (mgf1_hash_id < 0) { options = NULL; } else { options = &pss_opts; pss_opts.mgf1_hash_id = mgf1_hash_id; pss_opts.expected_salt_len = salt_len; } ret = mbedtls_pk_verify_ext(pk_type, options, &pk, digest, message_str->x, message_str->len, result_str->x, sig_len); #if defined(MBEDTLS_USE_PSA_CRYPTO) if (result == MBEDTLS_ERR_RSA_INVALID_PADDING) { /* Mbed TLS distinguishes "invalid padding" from "valid padding but * the rest of the signature is invalid". This has little use in * practice and PSA doesn't report this distinction. * In this case, PSA returns PSA_ERROR_INVALID_SIGNATURE translated * to MBEDTLS_ERR_RSA_VERIFY_FAILED. * However, currently `mbedtls_pk_verify_ext()` may use either the * PSA or the Mbed TLS API, depending on the PSS options used. * So, it may return either INVALID_PADDING or INVALID_SIGNATURE. */ TEST_ASSERT(ret == result || ret == MBEDTLS_ERR_RSA_VERIFY_FAILED); } else #endif { TEST_EQUAL(ret, result); } exit: mbedtls_pk_free(&pk); MD_OR_USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PK_CAN_ECDSA_VERIFY */ void pk_ec_test_vec(int type, int id, data_t *key, data_t *hash, data_t *sig, int ret) { mbedtls_pk_context pk; mbedtls_ecp_keypair *eckey; mbedtls_pk_init(&pk); USE_PSA_INIT(); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(type)) == 0); TEST_ASSERT(mbedtls_pk_can_do(&pk, MBEDTLS_PK_ECDSA)); eckey = mbedtls_pk_ec_rw(pk); TEST_ASSERT(mbedtls_ecp_group_load(&eckey->grp, id) == 0); TEST_ASSERT(mbedtls_ecp_point_read_binary(&eckey->grp, &eckey->Q, key->x, key->len) == 0); // MBEDTLS_MD_NONE is used since it will be ignored. TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_NONE, hash->x, hash->len, sig->x, sig->len) == ret); exit: mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE:MBEDTLS_ECDSA_C:MBEDTLS_ECDSA_DETERMINISTIC */ void pk_sign_verify_restart(int pk_type, int grp_id, char *d_str, char *QX_str, char *QY_str, int md_alg, data_t *hash, data_t *sig_check, int max_ops, int min_restart, int max_restart) { int ret, cnt_restart; mbedtls_pk_restart_ctx rs_ctx; mbedtls_pk_context prv, pub; unsigned char sig[MBEDTLS_ECDSA_MAX_LEN]; size_t slen; mbedtls_pk_restart_init(&rs_ctx); mbedtls_pk_init(&prv); mbedtls_pk_init(&pub); USE_PSA_INIT(); memset(sig, 0, sizeof(sig)); TEST_ASSERT(mbedtls_pk_setup(&prv, mbedtls_pk_info_from_type(pk_type)) == 0); TEST_ASSERT(mbedtls_ecp_group_load(&mbedtls_pk_ec_rw(prv)->grp, grp_id) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&mbedtls_pk_ec_rw(prv)->d, d_str) == 0); TEST_ASSERT(mbedtls_pk_setup(&pub, mbedtls_pk_info_from_type(pk_type)) == 0); TEST_ASSERT(mbedtls_ecp_group_load(&mbedtls_pk_ec_rw(pub)->grp, grp_id) == 0); TEST_ASSERT(mbedtls_ecp_point_read_string(&mbedtls_pk_ec_rw(pub)->Q, 16, QX_str, QY_str) == 0); mbedtls_ecp_set_max_ops(max_ops); slen = sizeof(sig); cnt_restart = 0; do { ret = mbedtls_pk_sign_restartable(&prv, md_alg, hash->x, hash->len, sig, sizeof(sig), &slen, mbedtls_test_rnd_std_rand, NULL, &rs_ctx); } while (ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart); TEST_ASSERT(ret == 0); TEST_ASSERT(slen == sig_check->len); TEST_ASSERT(memcmp(sig, sig_check->x, slen) == 0); TEST_ASSERT(cnt_restart >= min_restart); TEST_ASSERT(cnt_restart <= max_restart); cnt_restart = 0; do { ret = mbedtls_pk_verify_restartable(&pub, md_alg, hash->x, hash->len, sig, slen, &rs_ctx); } while (ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart); TEST_ASSERT(ret == 0); TEST_ASSERT(cnt_restart >= min_restart); TEST_ASSERT(cnt_restart <= max_restart); sig[0]++; do { ret = mbedtls_pk_verify_restartable(&pub, md_alg, hash->x, hash->len, sig, slen, &rs_ctx); } while (ret == MBEDTLS_ERR_ECP_IN_PROGRESS); TEST_ASSERT(ret != 0); sig[0]--; /* Do we leak memory when aborting? try verify then sign * This test only makes sense when we actually restart */ if (min_restart > 0) { ret = mbedtls_pk_verify_restartable(&pub, md_alg, hash->x, hash->len, sig, slen, &rs_ctx); TEST_ASSERT(ret == MBEDTLS_ERR_ECP_IN_PROGRESS); mbedtls_pk_restart_free(&rs_ctx); slen = sizeof(sig); ret = mbedtls_pk_sign_restartable(&prv, md_alg, hash->x, hash->len, sig, sizeof(sig), &slen, mbedtls_test_rnd_std_rand, NULL, &rs_ctx); TEST_ASSERT(ret == MBEDTLS_ERR_ECP_IN_PROGRESS); } exit: mbedtls_pk_restart_free(&rs_ctx); mbedtls_pk_free(&prv); mbedtls_pk_free(&pub); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_MD_CAN_SHA256 */ void pk_sign_verify(int type, int parameter, int sign_ret, int verify_ret) { mbedtls_pk_context pk; size_t sig_len; unsigned char hash[32]; // Hard-coded for SHA256 size_t hash_len = sizeof(hash); unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE]; void *rs_ctx = NULL; #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_ctx ctx; rs_ctx = &ctx; mbedtls_pk_restart_init(rs_ctx); /* This value is large enough that the operation will complete in one run. * See comments at the top of ecp_test_vect_restart in * test_suite_ecp.function for estimates of operation counts. */ mbedtls_ecp_set_max_ops(42000); #endif mbedtls_pk_init(&pk); MD_OR_USE_PSA_INIT(); memset(hash, 0x2a, sizeof(hash)); memset(sig, 0, sizeof(sig)); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(type)) == 0); TEST_ASSERT(pk_genkey(&pk, parameter) == 0); TEST_ASSERT(mbedtls_pk_sign_restartable(&pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL, rs_ctx) == sign_ret); if (sign_ret == 0) { TEST_ASSERT(sig_len <= MBEDTLS_PK_SIGNATURE_MAX_SIZE); } else { sig_len = MBEDTLS_PK_SIGNATURE_MAX_SIZE; } TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len) == verify_ret); if (verify_ret == 0) { hash[0]++; TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len) != 0); hash[0]--; sig[0]++; TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len) != 0); sig[0]--; } TEST_ASSERT(mbedtls_pk_sign(&pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL) == sign_ret); if (sign_ret == 0) { TEST_ASSERT(sig_len <= MBEDTLS_PK_SIGNATURE_MAX_SIZE); } else { sig_len = MBEDTLS_PK_SIGNATURE_MAX_SIZE; } TEST_ASSERT(mbedtls_pk_verify_restartable(&pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len, rs_ctx) == verify_ret); if (verify_ret == 0) { hash[0]++; TEST_ASSERT(mbedtls_pk_verify_restartable(&pk, MBEDTLS_MD_SHA256, hash, sizeof(hash), sig, sig_len, rs_ctx) != 0); hash[0]--; sig[0]++; TEST_ASSERT(mbedtls_pk_verify_restartable(&pk, MBEDTLS_MD_SHA256, hash, sizeof(hash), sig, sig_len, rs_ctx) != 0); sig[0]--; } exit: #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_free(rs_ctx); #endif mbedtls_pk_free(&pk); MD_OR_USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_encrypt_decrypt_test(data_t *message, int mod, char *input_P, char *input_Q, char *input_N, char *input_E, int ret) { unsigned char output[300], result[300]; mbedtls_test_rnd_pseudo_info rnd_info; mbedtls_mpi N, P, Q, E; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; size_t olen, rlen; mbedtls_pk_init(&pk); mbedtls_mpi_init(&N); mbedtls_mpi_init(&P); mbedtls_mpi_init(&Q); mbedtls_mpi_init(&E); USE_PSA_INIT(); memset(&rnd_info, 0, sizeof(mbedtls_test_rnd_pseudo_info)); memset(output, 0, sizeof(output)); /* encryption test */ /* init pk-rsa context */ TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); rsa = mbedtls_pk_rsa(pk); /* load public key */ rsa->len = mod / 8; TEST_ASSERT(mbedtls_test_read_mpi(&rsa->N, input_N) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&rsa->E, input_E) == 0); TEST_ASSERT(mbedtls_pk_encrypt(&pk, message->x, message->len, output, &olen, sizeof(output), mbedtls_test_rnd_pseudo_rand, &rnd_info) == ret); /* decryption test */ mbedtls_mpi_init(&N); mbedtls_mpi_init(&P); mbedtls_mpi_init(&Q); mbedtls_mpi_init(&E); /* init pk-rsa context */ mbedtls_pk_free(&pk); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); rsa = mbedtls_pk_rsa(pk); /* load public key */ TEST_ASSERT(mbedtls_test_read_mpi(&N, input_N) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&E, input_E) == 0); /* load private key */ TEST_ASSERT(mbedtls_test_read_mpi(&P, input_P) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&Q, input_Q) == 0); TEST_ASSERT(mbedtls_rsa_import(rsa, &N, &P, &Q, NULL, &E) == 0); TEST_ASSERT(mbedtls_rsa_get_len(rsa) == (size_t) (mod / 8)); TEST_ASSERT(mbedtls_rsa_complete(rsa) == 0); memset(result, 0, sizeof(result)); rlen = 0; TEST_ASSERT(mbedtls_pk_decrypt(&pk, output, olen, result, &rlen, sizeof(result), mbedtls_test_rnd_pseudo_rand, &rnd_info) == ret); if (ret == 0) { TEST_ASSERT(rlen == message->len); TEST_ASSERT(memcmp(result, message->x, rlen) == 0); } exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&P); mbedtls_mpi_free(&Q); mbedtls_mpi_free(&E); mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_decrypt_test_vec(data_t *cipher, int mod, char *input_P, char *input_Q, char *input_N, char *input_E, data_t *clear, int ret) { unsigned char output[256]; mbedtls_test_rnd_pseudo_info rnd_info; mbedtls_mpi N, P, Q, E; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; size_t olen; mbedtls_pk_init(&pk); mbedtls_mpi_init(&N); mbedtls_mpi_init(&P); mbedtls_mpi_init(&Q); mbedtls_mpi_init(&E); USE_PSA_INIT(); memset(&rnd_info, 0, sizeof(mbedtls_test_rnd_pseudo_info)); /* init pk-rsa context */ TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); rsa = mbedtls_pk_rsa(pk); /* load public key */ TEST_ASSERT(mbedtls_test_read_mpi(&N, input_N) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&E, input_E) == 0); /* load private key */ TEST_ASSERT(mbedtls_test_read_mpi(&P, input_P) == 0); TEST_ASSERT(mbedtls_test_read_mpi(&Q, input_Q) == 0); TEST_ASSERT(mbedtls_rsa_import(rsa, &N, &P, &Q, NULL, &E) == 0); TEST_ASSERT(mbedtls_rsa_get_len(rsa) == (size_t) (mod / 8)); TEST_ASSERT(mbedtls_rsa_complete(rsa) == 0); /* decryption test */ memset(output, 0, sizeof(output)); olen = 0; TEST_ASSERT(mbedtls_pk_decrypt(&pk, cipher->x, cipher->len, output, &olen, sizeof(output), mbedtls_test_rnd_pseudo_rand, &rnd_info) == ret); if (ret == 0) { TEST_ASSERT(olen == clear->len); TEST_ASSERT(memcmp(output, clear->x, olen) == 0); } exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&P); mbedtls_mpi_free(&Q); mbedtls_mpi_free(&E); mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_USE_PSA_CRYPTO */ void pk_wrap_rsa_decrypt_test_vec(data_t *cipher, int mod, char *input_P, char *input_Q, char *input_N, char *input_E, data_t *clear, int ret) { unsigned char output[256]; mbedtls_test_rnd_pseudo_info rnd_info; mbedtls_mpi N, P, Q, E; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_svc_key_id_t key_id; size_t olen; mbedtls_pk_init(&pk); mbedtls_mpi_init(&N); mbedtls_mpi_init(&P); mbedtls_mpi_init(&Q); mbedtls_mpi_init(&E); USE_PSA_INIT(); memset(&rnd_info, 0, sizeof(mbedtls_test_rnd_pseudo_info)); /* init pk-rsa context */ TEST_EQUAL(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)), 0); rsa = mbedtls_pk_rsa(pk); /* load public key */ TEST_EQUAL(mbedtls_test_read_mpi(&N, input_N), 0); TEST_EQUAL(mbedtls_test_read_mpi(&E, input_E), 0); /* load private key */ TEST_EQUAL(mbedtls_test_read_mpi(&P, input_P), 0); TEST_EQUAL(mbedtls_test_read_mpi(&Q, input_Q), 0); TEST_EQUAL(mbedtls_rsa_import(rsa, &N, &P, &Q, NULL, &E), 0); TEST_EQUAL(mbedtls_rsa_get_len(rsa), (size_t) (mod / 8)); TEST_EQUAL(mbedtls_rsa_complete(rsa), 0); /* Turn PK context into an opaque one. */ TEST_EQUAL(mbedtls_pk_wrap_as_opaque(&pk, &key_id, PSA_ALG_RSA_PKCS1V15_CRYPT, PSA_KEY_USAGE_DECRYPT, PSA_ALG_NONE), 0); /* decryption test */ memset(output, 0, sizeof(output)); olen = 0; TEST_EQUAL(mbedtls_pk_decrypt(&pk, cipher->x, cipher->len, output, &olen, sizeof(output), mbedtls_test_rnd_pseudo_rand, &rnd_info), ret); if (ret == 0) { TEST_EQUAL(olen, clear->len); TEST_EQUAL(memcmp(output, clear->x, olen), 0); } TEST_EQUAL(PSA_SUCCESS, psa_destroy_key(key_id)); exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&P); mbedtls_mpi_free(&Q); mbedtls_mpi_free(&E); mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE */ void pk_ec_nocrypt(int type) { mbedtls_pk_context pk; unsigned char output[100]; unsigned char input[100]; mbedtls_test_rnd_pseudo_info rnd_info; size_t olen = 0; int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH; mbedtls_pk_init(&pk); USE_PSA_INIT(); memset(&rnd_info, 0, sizeof(mbedtls_test_rnd_pseudo_info)); memset(output, 0, sizeof(output)); memset(input, 0, sizeof(input)); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(type)) == 0); TEST_ASSERT(mbedtls_pk_encrypt(&pk, input, sizeof(input), output, &olen, sizeof(output), mbedtls_test_rnd_pseudo_rand, &rnd_info) == ret); TEST_ASSERT(mbedtls_pk_decrypt(&pk, input, sizeof(input), output, &olen, sizeof(output), mbedtls_test_rnd_pseudo_rand, &rnd_info) == ret); exit: mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_overflow() { mbedtls_pk_context pk; size_t hash_len = UINT_MAX + 1, sig_len = UINT_MAX + 1; unsigned char hash[50], sig[100]; mbedtls_pk_init(&pk); USE_PSA_INIT(); memset(hash, 0x2a, sizeof(hash)); memset(sig, 0, sizeof(sig)); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); #if defined(MBEDTLS_PKCS1_V21) TEST_ASSERT(mbedtls_pk_verify_ext(MBEDTLS_PK_RSASSA_PSS, NULL, &pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); #endif /* MBEDTLS_PKCS1_V21 */ TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); TEST_ASSERT(mbedtls_pk_sign(&pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); exit: mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */ void pk_rsa_alt() { /* * An rsa_alt context can only do private operations (decrypt, sign). * Test it against the public operations (encrypt, verify) of a * corresponding rsa context. */ mbedtls_rsa_context raw; mbedtls_pk_context rsa, alt; mbedtls_pk_debug_item dbg_items[10]; unsigned char hash[50], sig[64]; unsigned char msg[50], ciph[64], test[50]; size_t sig_len, ciph_len, test_len; int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH; mbedtls_rsa_init(&raw); mbedtls_pk_init(&rsa); mbedtls_pk_init(&alt); USE_PSA_INIT(); memset(hash, 0x2a, sizeof(hash)); memset(sig, 0, sizeof(sig)); memset(msg, 0x2a, sizeof(msg)); memset(ciph, 0, sizeof(ciph)); memset(test, 0, sizeof(test)); /* Initialize PK RSA context with random key */ TEST_ASSERT(mbedtls_pk_setup(&rsa, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); TEST_ASSERT(pk_genkey(&rsa, RSA_KEY_SIZE) == 0); /* Extract key to the raw rsa context */ TEST_ASSERT(mbedtls_rsa_copy(&raw, mbedtls_pk_rsa(rsa)) == 0); /* Initialize PK RSA_ALT context */ TEST_ASSERT(mbedtls_pk_setup_rsa_alt(&alt, (void *) &raw, mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func) == 0); /* Test administrative functions */ TEST_ASSERT(mbedtls_pk_can_do(&alt, MBEDTLS_PK_RSA)); TEST_ASSERT(mbedtls_pk_get_bitlen(&alt) == RSA_KEY_SIZE); TEST_ASSERT(mbedtls_pk_get_len(&alt) == RSA_KEY_LEN); TEST_ASSERT(mbedtls_pk_get_type(&alt) == MBEDTLS_PK_RSA_ALT); TEST_ASSERT(strcmp(mbedtls_pk_get_name(&alt), "RSA-alt") == 0); /* Test signature */ #if SIZE_MAX > UINT_MAX TEST_ASSERT(mbedtls_pk_sign(&alt, MBEDTLS_MD_NONE, hash, SIZE_MAX, sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL) == MBEDTLS_ERR_PK_BAD_INPUT_DATA); #endif /* SIZE_MAX > UINT_MAX */ TEST_ASSERT(mbedtls_pk_sign(&alt, MBEDTLS_MD_NONE, hash, sizeof(hash), sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL) == 0); TEST_ASSERT(sig_len == RSA_KEY_LEN); TEST_ASSERT(mbedtls_pk_verify(&rsa, MBEDTLS_MD_NONE, hash, sizeof(hash), sig, sig_len) == 0); /* Test decrypt */ TEST_ASSERT(mbedtls_pk_encrypt(&rsa, msg, sizeof(msg), ciph, &ciph_len, sizeof(ciph), mbedtls_test_rnd_std_rand, NULL) == 0); TEST_ASSERT(mbedtls_pk_decrypt(&alt, ciph, ciph_len, test, &test_len, sizeof(test), mbedtls_test_rnd_std_rand, NULL) == 0); TEST_ASSERT(test_len == sizeof(msg)); TEST_ASSERT(memcmp(test, msg, test_len) == 0); /* Test forbidden operations */ TEST_ASSERT(mbedtls_pk_encrypt(&alt, msg, sizeof(msg), ciph, &ciph_len, sizeof(ciph), mbedtls_test_rnd_std_rand, NULL) == ret); TEST_ASSERT(mbedtls_pk_verify(&alt, MBEDTLS_MD_NONE, hash, sizeof(hash), sig, sig_len) == ret); TEST_ASSERT(mbedtls_pk_debug(&alt, dbg_items) == ret); exit: mbedtls_rsa_free(&raw); mbedtls_pk_free(&rsa); mbedtls_pk_free(&alt); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_MD_CAN_SHA256:MBEDTLS_USE_PSA_CRYPTO */ void pk_psa_sign(int parameter_arg, int psa_type_arg, int expected_bits_arg) { mbedtls_pk_context pk; unsigned char hash[32]; unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE]; unsigned char pkey_legacy[200]; unsigned char pkey_psa[200]; unsigned char *pkey_legacy_start, *pkey_psa_start; psa_algorithm_t alg_psa; size_t sig_len, klen_legacy, klen_psa; int ret; mbedtls_svc_key_id_t key_id; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; psa_key_type_t expected_type = psa_type_arg; size_t expected_bits = expected_bits_arg; /* * This tests making signatures with a wrapped PSA key: * - generate a fresh ECP/RSA legacy PK context * - wrap it in a PK context and make a signature this way * - extract the public key * - parse it to a PK context and verify the signature this way */ mbedtls_pk_init(&pk); USE_PSA_INIT(); #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME) if (PSA_KEY_TYPE_IS_RSA(psa_type_arg)) { /* Create legacy RSA public/private key in PK context. */ TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == 0); TEST_ASSERT(mbedtls_rsa_gen_key(mbedtls_pk_rsa(pk), mbedtls_test_rnd_std_rand, NULL, parameter_arg, 3) == 0); alg_psa = PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_SHA_256); } else #endif /* MBEDTLS_RSA_C && MBEDTLS_GENPRIME */ #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(psa_type_arg)) { mbedtls_ecp_group_id grpid = parameter_arg; /* Create legacy EC public/private key in PK context. */ TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY)) == 0); TEST_ASSERT(pk_genkey(&pk, grpid) == 0); alg_psa = PSA_ALG_ECDSA(PSA_ALG_SHA_256); } else #endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */ { (void) parameter_arg; TEST_ASSUME(!"Opaque PK key not supported in this configuration"); } /* Export underlying public key for re-importing in a legacy context. */ #if defined(MBEDTLS_PK_WRITE_C) ret = mbedtls_pk_write_pubkey_der(&pk, pkey_legacy, sizeof(pkey_legacy)); TEST_ASSERT(ret >= 0); klen_legacy = (size_t) ret; /* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */ pkey_legacy_start = pkey_legacy + sizeof(pkey_legacy) - klen_legacy; #else ret = mbedtls_ecp_point_write_binary(&(mbedtls_pk_ec_ro(pk)->grp), &(mbedtls_pk_ec_ro(pk)->Q), MBEDTLS_ECP_PF_UNCOMPRESSED, &klen_legacy, pkey_legacy, sizeof(pkey_legacy)); TEST_EQUAL(ret, 0); pkey_legacy_start = pkey_legacy; #endif /* MBEDTLS_PK_WRITE_C */ /* Turn PK context into an opaque one. */ TEST_ASSERT(mbedtls_pk_wrap_as_opaque(&pk, &key_id, alg_psa, PSA_KEY_USAGE_SIGN_HASH, PSA_ALG_NONE) == 0); PSA_ASSERT(psa_get_key_attributes(key_id, &attributes)); TEST_EQUAL(psa_get_key_type(&attributes), expected_type); TEST_EQUAL(psa_get_key_bits(&attributes), expected_bits); TEST_EQUAL(psa_get_key_lifetime(&attributes), PSA_KEY_LIFETIME_VOLATILE); memset(hash, 0x2a, sizeof(hash)); memset(sig, 0, sizeof(sig)); TEST_ASSERT(mbedtls_pk_sign(&pk, MBEDTLS_MD_SHA256, hash, sizeof(hash), sig, sizeof(sig), &sig_len, NULL, NULL) == 0); /* Export underlying public key for re-importing in a psa context. */ #if defined(MBEDTLS_PK_WRITE_C) ret = mbedtls_pk_write_pubkey_der(&pk, pkey_psa, sizeof(pkey_psa)); TEST_ASSERT(ret >= 0); klen_psa = (size_t) ret; /* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */ pkey_psa_start = pkey_psa + sizeof(pkey_psa) - klen_psa; #else psa_status_t status; status = psa_export_public_key(key_id, pkey_psa, sizeof(pkey_psa), &klen_psa); TEST_EQUAL(status, PSA_SUCCESS); pkey_psa_start = pkey_psa; #endif /* MBEDTLS_PK_WRITE_C */ TEST_ASSERT(klen_psa == klen_legacy); TEST_ASSERT(memcmp(pkey_psa_start, pkey_legacy_start, klen_psa) == 0); mbedtls_pk_free(&pk); TEST_ASSERT(PSA_SUCCESS == psa_destroy_key(key_id)); mbedtls_pk_init(&pk); /* If we used "pk_write" previously, then we go for a "pk_parse" here; * otherwise if we went for "ecp_point_write_binary" then we'll go * for a "ecp_point_read_binary" here. This allows to drop dependencies * on "PK_WRITE" and "PK_PARSE" if required */ #if defined(MBEDTLS_PK_WRITE_C) && defined(MBEDTLS_PK_PARSE_C) TEST_EQUAL(mbedtls_pk_parse_public_key(&pk, pkey_legacy_start, klen_legacy), 0); #else TEST_EQUAL(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY)), 0); TEST_EQUAL(mbedtls_ecp_group_load( &(mbedtls_pk_ec_rw(pk)->grp), (mbedtls_ecp_group_id) parameter_arg), 0); TEST_EQUAL(mbedtls_ecp_point_read_binary(&(mbedtls_pk_ec_ro(pk)->grp), &(mbedtls_pk_ec_rw(pk)->Q), pkey_legacy_start, klen_legacy), 0); #endif TEST_ASSERT(mbedtls_pk_verify(&pk, MBEDTLS_MD_SHA256, hash, sizeof(hash), sig, sig_len) == 0); exit: /* * Key attributes may have been returned by psa_get_key_attributes() * thus reset them as required. */ psa_reset_key_attributes(&attributes); mbedtls_pk_free(&pk); USE_PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PSA_CRYPTO_C:MBEDTLS_GENPRIME */ void pk_psa_sign_ext(int pk_type, int parameter, int key_pk_type, int md_alg) { /* See the description of pk_genkey() for the description of the `parameter` argument. */ mbedtls_pk_context pk; size_t sig_len; unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE]; unsigned char hash[PSA_HASH_MAX_SIZE]; size_t hash_len = mbedtls_hash_info_get_size(md_alg); void const *options = NULL; mbedtls_pk_rsassa_pss_options rsassa_pss_options; memset(hash, 0x2a, sizeof(hash)); memset(sig, 0, sizeof(sig)); mbedtls_pk_init(&pk); PSA_INIT(); TEST_ASSERT(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(pk_type)) == 0); TEST_ASSERT(pk_genkey(&pk, parameter) == 0); TEST_ASSERT(mbedtls_pk_sign_ext(key_pk_type, &pk, md_alg, hash, hash_len, sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL) == 0); if (key_pk_type == MBEDTLS_PK_RSASSA_PSS) { rsassa_pss_options.mgf1_hash_id = md_alg; TEST_ASSERT(hash_len != 0); rsassa_pss_options.expected_salt_len = hash_len; options = (const void *) &rsassa_pss_options; } TEST_ASSERT(mbedtls_pk_verify_ext(key_pk_type, options, &pk, md_alg, hash, hash_len, sig, sig_len) == 0); exit: mbedtls_pk_free(&pk); PSA_DONE(); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_GENPRIME:MBEDTLS_USE_PSA_CRYPTO */ void pk_psa_wrap_sign_ext(int pk_type, int parameter, int key_pk_type, int md_alg) { /* See the description of mbedtls_rsa_gen_key() for the description of the `parameter` argument. */ mbedtls_pk_context pk; size_t sig_len, pkey_len; mbedtls_svc_key_id_t key_id; unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE]; unsigned char pkey[PSA_EXPORT_PUBLIC_KEY_MAX_SIZE]; unsigned char *pkey_start; unsigned char hash[PSA_HASH_MAX_SIZE]; psa_algorithm_t psa_md_alg = mbedtls_hash_info_psa_from_md(md_alg); psa_algorithm_t psa_alg; size_t hash_len = PSA_HASH_LENGTH(psa_md_alg); void const *options = NULL; mbedtls_pk_rsassa_pss_options rsassa_pss_options; int ret; mbedtls_pk_init(&pk); PSA_INIT(); /* Create legacy RSA public/private key in PK context. */ mbedtls_pk_init(&pk); TEST_EQUAL(mbedtls_pk_setup(&pk, mbedtls_pk_info_from_type(pk_type)), 0); TEST_EQUAL(mbedtls_rsa_gen_key(mbedtls_pk_rsa(pk), mbedtls_test_rnd_std_rand, NULL, parameter, 3), 0); /* Export underlying public key for re-importing in a legacy context. */ ret = mbedtls_pk_write_pubkey_der(&pk, pkey, sizeof(pkey)); TEST_ASSERT(ret >= 0); pkey_len = (size_t) ret; /* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */ pkey_start = pkey + sizeof(pkey) - pkey_len; if (key_pk_type == MBEDTLS_PK_RSA) { psa_alg = PSA_ALG_RSA_PKCS1V15_SIGN(psa_md_alg); } else if (key_pk_type == MBEDTLS_PK_RSASSA_PSS) { psa_alg = PSA_ALG_RSA_PSS(psa_md_alg); } else { TEST_ASSUME(!"PK key type not supported in this configuration"); } /* Turn PK context into an opaque one. */ TEST_EQUAL(mbedtls_pk_wrap_as_opaque(&pk, &key_id, psa_alg, PSA_KEY_USAGE_SIGN_HASH, PSA_ALG_NONE), 0); memset(hash, 0x2a, sizeof(hash)); memset(sig, 0, sizeof(sig)); TEST_EQUAL(mbedtls_pk_sign_ext(key_pk_type, &pk, md_alg, hash, hash_len, sig, sizeof(sig), &sig_len, mbedtls_test_rnd_std_rand, NULL), 0); mbedtls_pk_free(&pk); TEST_EQUAL(PSA_SUCCESS, psa_destroy_key(key_id)); mbedtls_pk_init(&pk); TEST_EQUAL(mbedtls_pk_parse_public_key(&pk, pkey_start, pkey_len), 0); if (key_pk_type == MBEDTLS_PK_RSASSA_PSS) { rsassa_pss_options.mgf1_hash_id = md_alg; TEST_ASSERT(hash_len != 0); rsassa_pss_options.expected_salt_len = hash_len; options = (const void *) &rsassa_pss_options; } TEST_EQUAL(mbedtls_pk_verify_ext(key_pk_type, options, &pk, md_alg, hash, hash_len, sig, sig_len), 0); exit: mbedtls_pk_free(&pk); PSA_DONE(); } /* END_CASE */