/* * \file cmac.c * * \brief NIST SP800-38B compliant CMAC implementation for AES and 3DES * * Copyright (C) 2006-2016, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * References: * * - NIST SP 800-38B Recommendation for Block Cipher Modes of Operation: The * CMAC Mode for Authentication * http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf * * - RFC 4493 - The AES-CMAC Algorithm * https://tools.ietf.org/html/rfc4493 * * - RFC 4615 - The Advanced Encryption Standard-Cipher-based Message * Authentication Code-Pseudo-Random Function-128 (AES-CMAC-PRF-128) * Algorithm for the Internet Key Exchange Protocol (IKE) * https://tools.ietf.org/html/rfc4615 * * Additional test vectors: ISO/IEC 9797-1 * */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_CMAC_C) #include "mbedtls/cmac.h" #include #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_calloc calloc #define mbedtls_free free #if defined(MBEDTLS_SELF_TEST) && ( defined(MBEDTLS_AES_C) || \ defined(MBEDTLS_DES_C) ) #include #define mbedtls_printf printf #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C || MBEDTLS_DES_C */ #endif /* MBEDTLS_PLATFORM_C */ /* Implementation that should never be optimized out by the compiler */ static void mbedtls_zeroize( void *v, size_t n ) { volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0; } /* * Multiplication by u in the Galois field of GF(2^n) * * As explained in NIST SP 800-38B, this can be computed: * * If MSB(p) = 0, then p = (p << 1) * If MSB(p) = 1, then p = (p << 1) ^ R_n * with R_64 = 0x1B and R_128 = 0x87 * * Input and output MUST NOT point to the same buffer * Block size must be 8 byes or 16 bytes - the block sizes for DES and AES. */ static int cmac_multiply_by_u( unsigned char *output, const unsigned char *input, size_t blocksize ) { const unsigned char R_128 = 0x87; const unsigned char R_64 = 0x1B; unsigned char R_n, mask; unsigned char overflow = 0x00; int i; if( blocksize == MBEDTLS_AES_BLOCK_SIZE ) { R_n = R_128; } else if( blocksize == MBEDTLS_DES3_BLOCK_SIZE ) { R_n = R_64; } else { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } for( i = blocksize - 1; i >= 0; i-- ) { output[i] = input[i] << 1 | overflow; overflow = input[i] >> 7; } /* mask = ( input[0] >> 7 ) ? 0xff : 0x00 * using bit operations to avoid branches */ /* MSVC has a warning about unary minus on unsigned, but this is * well-defined and precisely what we want to do here */ #if defined(_MSC_VER) #pragma warning( push ) #pragma warning( disable : 4146 ) #endif mask = - ( input[0] >> 7 ); #if defined(_MSC_VER) #pragma warning( pop ) #endif output[ blocksize - 1 ] ^= R_n & mask; return( 0 ); } /* * Generate subkeys * * - as specified by RFC 4493, section 2.3 Subkey Generation Algorithm */ static int cmac_generate_subkeys( mbedtls_cipher_context_t *ctx, unsigned char* K1, unsigned char* K2 ) { int ret; unsigned char L[MBEDTLS_CIPHER_BLKSIZE_MAX]; size_t olen, block_size; mbedtls_zeroize( L, sizeof( L ) ); block_size = ctx->cipher_info->block_size; /* Calculate Ek(0) */ if( ( ret = mbedtls_cipher_update( ctx, L, block_size, L, &olen ) ) != 0 ) goto exit; /* * Generate K1 and K2 */ if( ( ret = cmac_multiply_by_u( K1, L , block_size ) ) != 0 ) goto exit; if( ( ret = cmac_multiply_by_u( K2, K1 , block_size ) ) != 0 ) goto exit; exit: mbedtls_zeroize( L, sizeof( L ) ); return( ret ); } static void cmac_xor_block( unsigned char *output, const unsigned char *input1, const unsigned char *input2, const size_t block_size ) { size_t index; for( index = 0; index < block_size; index++ ) output[ index ] = input1[ index ] ^ input2[ index ]; } /* * Create padded last block from (partial) last block. * * We can't use the padding option from the cipher layer, as it only works for * CBC and we use ECB mode, and anyway we need to XOR K1 or K2 in addition. */ static void cmac_pad( unsigned char padded_block[MBEDTLS_CIPHER_BLKSIZE_MAX], size_t padded_block_len, const unsigned char *last_block, size_t last_block_len ) { size_t j; for( j = 0; j < padded_block_len; j++ ) { if( j < last_block_len ) padded_block[j] = last_block[j]; else if( j == last_block_len ) padded_block[j] = 0x80; else padded_block[j] = 0x00; } } int mbedtls_cipher_cmac_starts( mbedtls_cipher_context_t *ctx, const unsigned char *key, size_t keybits ) { mbedtls_cipher_type_t type; mbedtls_cmac_context_t *cmac_ctx; int retval; if( ctx == NULL || ctx->cipher_info == NULL || key == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); if( ( retval = mbedtls_cipher_setkey( ctx, key, keybits, MBEDTLS_ENCRYPT ) ) != 0 ) return( retval ); type = ctx->cipher_info->type; switch( type ) { case MBEDTLS_CIPHER_AES_128_ECB: case MBEDTLS_CIPHER_AES_192_ECB: case MBEDTLS_CIPHER_AES_256_ECB: case MBEDTLS_CIPHER_DES_EDE3_ECB: break; default: return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } /* Allocated and initialise in the cipher context memory for the CMAC * context */ cmac_ctx = mbedtls_calloc( 1, sizeof( mbedtls_cmac_context_t ) ); if( cmac_ctx == NULL ) return( MBEDTLS_ERR_CIPHER_ALLOC_FAILED ); ctx->cmac_ctx = cmac_ctx; mbedtls_zeroize( cmac_ctx->state, sizeof( cmac_ctx->state ) ); cmac_ctx->padding_flag = 1; return 0; } int mbedtls_cipher_cmac_update( mbedtls_cipher_context_t *ctx, const unsigned char *input, size_t ilen ) { mbedtls_cmac_context_t* cmac_ctx; unsigned char *state; int n, j, ret = 0; size_t olen, block_size; if( ctx == NULL || ctx->cipher_info == NULL || input == NULL || ctx->cmac_ctx == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); cmac_ctx = ctx->cmac_ctx; block_size = ctx->cipher_info->block_size; state = ctx->cmac_ctx->state; /* Is their data still to process from the last call, that's equal to * or greater than a block? */ if( cmac_ctx->unprocessed_len > 0 && ilen + cmac_ctx->unprocessed_len > block_size ) { memcpy( &cmac_ctx->unprocessed_block[cmac_ctx->unprocessed_len], input, block_size - cmac_ctx->unprocessed_len ); cmac_xor_block( state, cmac_ctx->unprocessed_block, state, block_size ); if( ( ret = mbedtls_cipher_update( ctx, state, block_size, state, &olen ) ) != 0 ) { goto exit; } ilen -= block_size; input += cmac_ctx->unprocessed_len; cmac_ctx->unprocessed_len = 0; } /* n is the number of blocks including any final partial block */ n = ( ilen + block_size - 1 ) / block_size; /* Iterate across the input data in block sized chunks */ for( j = 0; j < n - 1; j++ ) { cmac_xor_block( state, input, state, block_size ); if( ( ret = mbedtls_cipher_update( ctx, state, block_size, state, &olen ) ) != 0 ) goto exit; ilen -= block_size; input += block_size; cmac_ctx->padding_flag = 0; } /* If there is data left over that wasn't aligned to a block */ if( ilen > 0 ) { memcpy( &cmac_ctx->unprocessed_block, input, ilen ); cmac_ctx->unprocessed_len = ilen; if( ilen % block_size > 0 ) cmac_ctx->padding_flag = 1; else cmac_ctx->padding_flag = 0; } exit: return( ret ); } int mbedtls_cipher_cmac_finish( mbedtls_cipher_context_t *ctx, unsigned char *output ) { mbedtls_cmac_context_t* cmac_ctx; unsigned char *state, *last_block; unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX]; unsigned char K2[MBEDTLS_CIPHER_BLKSIZE_MAX]; unsigned char M_last[MBEDTLS_CIPHER_BLKSIZE_MAX]; int ret; size_t olen, block_size; if( ctx == NULL || ctx->cipher_info == NULL || ctx->cmac_ctx == NULL || output == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); cmac_ctx = ctx->cmac_ctx; block_size = ctx->cipher_info->block_size; state = cmac_ctx->state; mbedtls_zeroize( K1, sizeof( K1 ) ); mbedtls_zeroize( K2, sizeof( K2 ) ); cmac_generate_subkeys( ctx, K1, K2 ); last_block = cmac_ctx->unprocessed_block; /* Calculate last block */ if( cmac_ctx->padding_flag ) { cmac_pad( M_last, block_size, last_block, cmac_ctx->unprocessed_len ); cmac_xor_block( M_last, M_last, K2, block_size ); } else { /* Last block is complete block */ cmac_xor_block( M_last, last_block, K1, block_size ); } cmac_xor_block( state, M_last, state, block_size ); if( ( ret = mbedtls_cipher_update( ctx, state, block_size, state, &olen ) ) != 0 ) { goto exit; } memcpy( output, state, block_size ); exit: /* Wipe the generated keys on the stack, and any other transients to avoid * side channel leakage */ mbedtls_zeroize( K1, sizeof( K1 ) ); mbedtls_zeroize( K2, sizeof( K2 ) ); cmac_ctx->padding_flag = 1; cmac_ctx->unprocessed_len = 0; mbedtls_zeroize( cmac_ctx->unprocessed_block, sizeof( cmac_ctx->unprocessed_block ) ); mbedtls_zeroize( state, MBEDTLS_CIPHER_BLKSIZE_MAX ); return( ret ); } int mbedtls_cipher_cmac_reset( mbedtls_cipher_context_t *ctx ) { mbedtls_cmac_context_t* cmac_ctx; if( ctx == NULL || ctx->cipher_info == NULL || ctx->cmac_ctx == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); cmac_ctx = ctx->cmac_ctx; /* Reset the internal state */ cmac_ctx->unprocessed_len = 0; mbedtls_zeroize( cmac_ctx->unprocessed_block, sizeof( cmac_ctx->unprocessed_len ) ); mbedtls_zeroize( cmac_ctx->state, MBEDTLS_CIPHER_BLKSIZE_MAX ); cmac_ctx->padding_flag = 1; return( 0 ); } int mbedtls_cipher_cmac( const mbedtls_cipher_info_t *cipher_info, const unsigned char *key, size_t keylen, const unsigned char *input, size_t ilen, unsigned char *output ) { mbedtls_cipher_context_t ctx; int ret; if( cipher_info == NULL || key == NULL || input == NULL || output == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); mbedtls_cipher_init( &ctx ); if( ( ret = mbedtls_cipher_setup( &ctx, cipher_info ) ) != 0 ) goto exit; ret = mbedtls_cipher_cmac_starts( &ctx, key, keylen ); if( ret != 0 ) goto exit; ret = mbedtls_cipher_cmac_update( &ctx, input, ilen ); if( ret != 0 ) goto exit; ret = mbedtls_cipher_cmac_finish( &ctx, output ); exit: mbedtls_cipher_free( &ctx ); return( ret ); } #if defined(MBEDTLS_AES_C) /* * Implementation of AES-CMAC-PRF-128 defined in RFC 4615 */ int mbedtls_aes_cmac_prf_128( const unsigned char *key, size_t key_length, const unsigned char *input, size_t in_len, unsigned char *output ) { int ret; const mbedtls_cipher_info_t *cipher_info; unsigned char zero_key[MBEDTLS_AES_BLOCK_SIZE]; unsigned char int_key[MBEDTLS_AES_BLOCK_SIZE]; if( key == NULL || input == NULL || output == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); cipher_info = mbedtls_cipher_info_from_type( MBEDTLS_CIPHER_AES_128_ECB ); if( cipher_info == NULL ) { /* Failing at this point must be due to a build issue */ ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE; goto exit; } if( key_length == MBEDTLS_AES_BLOCK_SIZE ) { /* Use key as is */ memcpy( int_key, key, MBEDTLS_AES_BLOCK_SIZE ); } else { memset( zero_key, 0, MBEDTLS_AES_BLOCK_SIZE ); ret = mbedtls_cipher_cmac( cipher_info, zero_key, 128, key, key_length, int_key ); if( ret != 0 ) goto exit; } ret = mbedtls_cipher_cmac( cipher_info, int_key, 128, input, in_len, output ); exit: mbedtls_zeroize( int_key, sizeof( int_key ) ); return( ret ); } #endif /* MBEDTLS_AES_C */ #if defined(MBEDTLS_SELF_TEST) /* * CMAC test data from SP800-38B Appendix D.1 (corrected) * http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf * * AES-CMAC-PRF-128 test data from RFC 4615 * https://tools.ietf.org/html/rfc4615#page-4 */ #define NB_CMAC_TESTS_PER_KEY 4 #define NB_PRF_TESTS 3 #if defined(MBEDTLS_AES_C) || defined(MBEDTLS_DES_C) /* All CMAC test inputs are truncated from the same 64 byte buffer. */ static const unsigned char test_message[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 }; #endif /* MBEDTLS_AES_C || MBEDTLS_DES_C */ #if defined(MBEDTLS_AES_C) /* Truncation point of message for AES CMAC tests */ static const unsigned int aes_message_lengths[NB_CMAC_TESTS_PER_KEY] = { 0, 16, 40, 64 }; /* AES 128 CMAC Test Data */ static const unsigned char aes_128_key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c }; static const unsigned char aes_128_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = { { 0xfb, 0xee, 0xd6, 0x18, 0x35, 0x71, 0x33, 0x66, 0x7c, 0x85, 0xe0, 0x8f, 0x72, 0x36, 0xa8, 0xde }, { 0xf7, 0xdd, 0xac, 0x30, 0x6a, 0xe2, 0x66, 0xcc, 0xf9, 0x0b, 0xc1, 0x1e, 0xe4, 0x6d, 0x51, 0x3b } }; static const unsigned char aes_128_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] = { { 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46 }, { 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c }, { 0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27 }, { 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe } }; /* AES 192 CMAC Test Data */ static const unsigned char aes_192_key[24] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b }; static const unsigned char aes_192_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = { { 0x44, 0x8a, 0x5b, 0x1c, 0x93, 0x51, 0x4b, 0x27, 0x3e, 0xe6, 0x43, 0x9d, 0xd4, 0xda, 0xa2, 0x96 }, { 0x89, 0x14, 0xb6, 0x39, 0x26, 0xa2, 0x96, 0x4e, 0x7d, 0xcc, 0x87, 0x3b, 0xa9, 0xb5, 0x45, 0x2c } }; static const unsigned char aes_192_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] = { { 0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5, 0x31, 0xca, 0xc4, 0x83, 0xde, 0x7a, 0x93, 0x67 }, { 0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90, 0x06, 0x62, 0xf6, 0x5e, 0x61, 0x7c, 0x51, 0x84 }, { 0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad, 0x08, 0x9a, 0x82, 0xe6, 0xee, 0x90, 0x8b, 0x0e }, { 0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79, 0x4d, 0x77, 0x58, 0x96, 0x59, 0xf3, 0x9a, 0x11 } }; /* AES 256 CMAC Test Data */ static const unsigned char aes_256_key[32] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 }; static const unsigned char aes_256_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = { { 0xca, 0xd1, 0xed, 0x03, 0x29, 0x9e, 0xed, 0xac, 0x2e, 0x9a, 0x99, 0x80, 0x86, 0x21, 0x50, 0x2f }, { 0x95, 0xa3, 0xda, 0x06, 0x53, 0x3d, 0xdb, 0x58, 0x5d, 0x35, 0x33, 0x01, 0x0c, 0x42, 0xa0, 0xd9 } }; static const unsigned char aes_256_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] = { { 0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e, 0xfc, 0x6b, 0x55, 0x1f, 0x46, 0x67, 0xd9, 0x83 }, { 0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82, 0xbd, 0x4b, 0xf2, 0x8d, 0x8c, 0x37, 0xc3, 0x5c }, { 0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2, 0x32, 0xf5, 0xb1, 0x69, 0xb9, 0xc9, 0x11, 0xe6 }, { 0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5, 0x69, 0x6a, 0x2c, 0x05, 0x6c, 0x31, 0x54, 0x10 } }; #endif /* MBEDTLS_AES_C */ #if defined(MBEDTLS_DES_C) /* Truncation point of message for 3DES CMAC tests */ static const unsigned int des3_message_lengths[NB_CMAC_TESTS_PER_KEY] = { 0, 8, 20, 32 }; /* 3DES 2 Key CMAC Test Data */ static const unsigned char des3_2key_key[24] = { 0x4c, 0xf1, 0x51, 0x34, 0xa2, 0x85, 0x0d, 0xd5, 0x8a, 0x3d, 0x10, 0xba, 0x80, 0x57, 0x0d, 0x38, 0x4c, 0xf1, 0x51, 0x34, 0xa2, 0x85, 0x0d, 0xd5 }; static const unsigned char des3_2key_subkeys[2][8] = { { 0x8e, 0xcf, 0x37, 0x3e, 0xd7, 0x1a, 0xfa, 0xef }, { 0x1d, 0x9e, 0x6e, 0x7d, 0xae, 0x35, 0xf5, 0xc5 } }; static const unsigned char des3_2key_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_DES3_BLOCK_SIZE] = { { 0xbd, 0x2e, 0xbf, 0x9a, 0x3b, 0xa0, 0x03, 0x61 }, { 0x4f, 0xf2, 0xab, 0x81, 0x3c, 0x53, 0xce, 0x83 }, { 0x62, 0xdd, 0x1b, 0x47, 0x19, 0x02, 0xbd, 0x4e }, { 0x31, 0xb1, 0xe4, 0x31, 0xda, 0xbc, 0x4e, 0xb8 } }; /* 3DES 3 Key CMAC Test Data */ static const unsigned char des3_3key_key[24] = { 0x8a, 0xa8, 0x3b, 0xf8, 0xcb, 0xda, 0x10, 0x62, 0x0b, 0xc1, 0xbf, 0x19, 0xfb, 0xb6, 0xcd, 0x58, 0xbc, 0x31, 0x3d, 0x4a, 0x37, 0x1c, 0xa8, 0xb5 }; static const unsigned char des3_3key_subkeys[2][8] = { { 0x91, 0x98, 0xe9, 0xd3, 0x14, 0xe6, 0x53, 0x5f }, { 0x23, 0x31, 0xd3, 0xa6, 0x29, 0xcc, 0xa6, 0xa5 } }; static const unsigned char des3_3key_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_DES3_BLOCK_SIZE] = { { 0xb7, 0xa6, 0x88, 0xe1, 0x22, 0xff, 0xaf, 0x95 }, { 0x8e, 0x8f, 0x29, 0x31, 0x36, 0x28, 0x37, 0x97 }, { 0x74, 0x3d, 0xdb, 0xe0, 0xce, 0x2d, 0xc2, 0xed }, { 0x33, 0xe6, 0xb1, 0x09, 0x24, 0x00, 0xea, 0xe5 } }; #endif /* MBEDTLS_DES_C */ #if defined(MBEDTLS_AES_C) /* AES AES-CMAC-PRF-128 Test Data */ static const unsigned char PRFK[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xed, 0xcb }; /* Sizes in bytes */ static const size_t PRFKlen[NB_PRF_TESTS] = { 18, 16, 10 }; /* PRF M */ static const unsigned char PRFM[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13 }; static const unsigned char PRFT[NB_PRF_TESTS][16] = { { 0x84, 0xa3, 0x48, 0xa4, 0xa4, 0x5d, 0x23, 0x5b, 0xab, 0xff, 0xfc, 0x0d, 0x2b, 0x4d, 0xa0, 0x9a }, { 0x98, 0x0a, 0xe8, 0x7b, 0x5f, 0x4c, 0x9c, 0x52, 0x14, 0xf5, 0xb6, 0xa8, 0x45, 0x5e, 0x4c, 0x2d }, { 0x29, 0x0d, 0x9e, 0x11, 0x2e, 0xdb, 0x09, 0xee, 0x14, 0x1f, 0xcf, 0x64, 0xc0, 0xb7, 0x2f, 0x3d } }; #endif /* MBEDTLS_AES_C */ static int cmac_test_subkeys( int verbose, const char* testname, const unsigned char* key, int keybits, const unsigned char* subkeys, mbedtls_cipher_type_t cipher_type, int block_size, int num_tests ) { int i, ret; mbedtls_cipher_context_t ctx; const mbedtls_cipher_info_t *cipher_info; unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX]; unsigned char K2[MBEDTLS_CIPHER_BLKSIZE_MAX]; cipher_info = mbedtls_cipher_info_from_type( cipher_type ); if( cipher_info == NULL ) { /* Failing at this point must be due to a build issue */ return( MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE ); } mbedtls_cipher_init( &ctx ); for( i = 0; i < num_tests; i++ ) { if( verbose != 0 ) mbedtls_printf( " %s CMAC subkey #%u: ", testname, i + 1 ); if( ( ret = mbedtls_cipher_setup( &ctx, cipher_info ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "test execution failed\n" ); goto exit; } if( ( ret = mbedtls_cipher_setkey( &ctx, key, keybits, MBEDTLS_ENCRYPT ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "test execution failed\n" ); goto exit; } ret = cmac_generate_subkeys( &ctx, K1, K2 ); if( ret != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } if( ( ret = memcmp( K1, subkeys, block_size ) != 0 ) || ( ret = memcmp( K2, &subkeys[block_size], block_size ) != 0 ) ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } exit: mbedtls_cipher_free( &ctx ); return( ret ); } static int cmac_test_wth_cipher( int verbose, const char* testname, const unsigned char* key, int keybits, const unsigned char* messages, const unsigned int message_lengths[4], const unsigned char* expected_result, mbedtls_cipher_type_t cipher_type, int block_size, int num_tests ) { const mbedtls_cipher_info_t *cipher_info; int i, ret; unsigned char output[MBEDTLS_CIPHER_BLKSIZE_MAX]; cipher_info = mbedtls_cipher_info_from_type( cipher_type ); if( cipher_info == NULL ) { /* Failing at this point must be due to a build issue */ ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE; goto exit; } for( i = 0; i < num_tests; i++ ) { if( verbose != 0 ) mbedtls_printf( " %s CMAC #%u: ", testname, i +1 ); if( ( ret = mbedtls_cipher_cmac( cipher_info, key, keybits, messages, message_lengths[i], output ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } if( ( ret = memcmp( output, &expected_result[i * block_size], block_size ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } exit: return( ret ); } #if defined(MBEDTLS_AES_C) static int test_aes128_cmac_prf( int verbose ) { int i; int ret; unsigned char output[MBEDTLS_AES_BLOCK_SIZE]; for( i = 0; i < NB_PRF_TESTS; i++ ) { mbedtls_printf( " AES CMAC 128 PRF #%u: ", i ); ret = mbedtls_aes_cmac_prf_128( PRFK, PRFKlen[i], PRFM, 20, output ); if( ret != 0 || memcmp( output, PRFT[i], MBEDTLS_AES_BLOCK_SIZE ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); return( ret ); } else if( verbose != 0 ) { mbedtls_printf( "passed\n" ); } } return( ret ); } #endif /* MBEDTLS_AES_C */ int mbedtls_cmac_self_test( int verbose ) { int ret; #if defined(MBEDTLS_AES_C) /* AES-128 */ if( ( ret = cmac_test_subkeys( verbose, "AES 128", aes_128_key, 128, (const unsigned char*)aes_128_subkeys, MBEDTLS_CIPHER_AES_128_ECB, MBEDTLS_AES_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } if( ( ret = cmac_test_wth_cipher( verbose, "AES 128", aes_128_key, 128, test_message, aes_message_lengths, (const unsigned char*)aes_128_expected_result, MBEDTLS_CIPHER_AES_128_ECB, MBEDTLS_AES_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } /* AES-192 */ if( ( ret = cmac_test_subkeys( verbose, "AES 192", aes_192_key, 192, (const unsigned char*)aes_192_subkeys, MBEDTLS_CIPHER_AES_192_ECB, MBEDTLS_AES_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } if( ( ret = cmac_test_wth_cipher( verbose, "AES 192", aes_192_key, 192, test_message, aes_message_lengths, (const unsigned char*)aes_192_expected_result, MBEDTLS_CIPHER_AES_192_ECB, MBEDTLS_AES_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } /* AES-256 */ if( ( ret = cmac_test_subkeys( verbose, "AES 256", aes_256_key, 256, (const unsigned char*)aes_256_subkeys, MBEDTLS_CIPHER_AES_256_ECB, MBEDTLS_AES_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } if( ( ret = cmac_test_wth_cipher ( verbose, "AES 256", aes_256_key, 256, test_message, aes_message_lengths, (const unsigned char*)aes_256_expected_result, MBEDTLS_CIPHER_AES_256_ECB, MBEDTLS_AES_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } #endif /* MBEDTLS_AES_C */ #if defined(MBEDTLS_DES_C) /* 3DES 2 key */ if( ( ret = cmac_test_subkeys( verbose, "3DES 2 key", des3_2key_key, 192, (const unsigned char*)des3_2key_subkeys, MBEDTLS_CIPHER_DES_EDE3_ECB, MBEDTLS_DES3_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } if( ( ret = cmac_test_wth_cipher( verbose, "3DES 2 key", des3_2key_key, 192, test_message, des3_message_lengths, (const unsigned char*)des3_2key_expected_result, MBEDTLS_CIPHER_DES_EDE3_ECB, MBEDTLS_DES3_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } /* 3DES 3 key */ if( ( ret = cmac_test_subkeys( verbose, "3DES 3 key", des3_3key_key, 192, (const unsigned char*)des3_3key_subkeys, MBEDTLS_CIPHER_DES_EDE3_ECB, MBEDTLS_DES3_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } if( ( ret = cmac_test_wth_cipher( verbose, "3DES 3 key", des3_3key_key, 192, test_message, des3_message_lengths, (const unsigned char*)des3_3key_expected_result, MBEDTLS_CIPHER_DES_EDE3_ECB, MBEDTLS_DES3_BLOCK_SIZE, NB_CMAC_TESTS_PER_KEY ) != 0 ) ) { return( ret ); } #endif /* MBEDTLS_DES_C */ #if defined(MBEDTLS_AES_C) if( ( ret = test_aes128_cmac_prf( verbose ) != 0 ) ) return( ret ); #endif /* MBEDTLS_AES_C */ if( verbose != 0 ) mbedtls_printf( "\n" ); return( 0 ); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_CMAC_C */