/* * CTR_DRBG implementation based on AES-256 (NIST SP 800-90) * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The NIST SP 800-90 DRBGs are described in the following publication. * * http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf */ #include "common.h" #if defined(MBEDTLS_CTR_DRBG_C) #include "mbedtls/ctr_drbg.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #if defined(MBEDTLS_FS_IO) #include #endif #include "mbedtls/platform.h" /* * CTR_DRBG context initialization */ void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context *ctx) { memset(ctx, 0, sizeof(mbedtls_ctr_drbg_context)); mbedtls_aes_init(&ctx->aes_ctx); /* Indicate that the entropy nonce length is not set explicitly. * See mbedtls_ctr_drbg_set_nonce_len(). */ ctx->reseed_counter = -1; ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL; } /* * This function resets CTR_DRBG context to the state immediately * after initial call of mbedtls_ctr_drbg_init(). */ void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context *ctx) { if (ctx == NULL) { return; } #if defined(MBEDTLS_THREADING_C) /* The mutex is initialized iff f_entropy is set. */ if (ctx->f_entropy != NULL) { mbedtls_mutex_free(&ctx->mutex); } #endif mbedtls_aes_free(&ctx->aes_ctx); mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ctr_drbg_context)); ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL; ctx->reseed_counter = -1; } void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_context *ctx, int resistance) { ctx->prediction_resistance = resistance; } void mbedtls_ctr_drbg_set_entropy_len(mbedtls_ctr_drbg_context *ctx, size_t len) { ctx->entropy_len = len; } int mbedtls_ctr_drbg_set_nonce_len(mbedtls_ctr_drbg_context *ctx, size_t len) { /* If mbedtls_ctr_drbg_seed() has already been called, it's * too late. Return the error code that's closest to making sense. */ if (ctx->f_entropy != NULL) { return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED; } if (len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } /* This shouldn't be an issue because * MBEDTLS_CTR_DRBG_MAX_SEED_INPUT < INT_MAX in any sensible * configuration, but make sure anyway. */ if (len > INT_MAX) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } /* For backward compatibility with Mbed TLS <= 2.19, store the * entropy nonce length in a field that already exists, but isn't * used until after the initial seeding. */ /* Due to the capping of len above, the value fits in an int. */ ctx->reseed_counter = (int) len; return 0; } void mbedtls_ctr_drbg_set_reseed_interval(mbedtls_ctr_drbg_context *ctx, int interval) { ctx->reseed_interval = interval; } static int block_cipher_df(unsigned char *output, const unsigned char *data, size_t data_len) { unsigned char buf[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16]; unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN]; unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE]; unsigned char chain[MBEDTLS_CTR_DRBG_BLOCKSIZE]; unsigned char *p, *iv; mbedtls_aes_context aes_ctx; int ret = 0; int i, j; size_t buf_len, use_len; if (data_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } memset(buf, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16); mbedtls_aes_init(&aes_ctx); /* * Construct IV (16 bytes) and S in buffer * IV = Counter (in 32-bits) padded to 16 with zeroes * S = Length input string (in 32-bits) || Length of output (in 32-bits) || * data || 0x80 * (Total is padded to a multiple of 16-bytes with zeroes) */ p = buf + MBEDTLS_CTR_DRBG_BLOCKSIZE; MBEDTLS_PUT_UINT32_BE(data_len, p, 0); p += 4 + 3; *p++ = MBEDTLS_CTR_DRBG_SEEDLEN; memcpy(p, data, data_len); p[data_len] = 0x80; buf_len = MBEDTLS_CTR_DRBG_BLOCKSIZE + 8 + data_len + 1; for (i = 0; i < MBEDTLS_CTR_DRBG_KEYSIZE; i++) { key[i] = i; } if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { goto exit; } /* * Reduce data to MBEDTLS_CTR_DRBG_SEEDLEN bytes of data */ for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) { p = buf; memset(chain, 0, MBEDTLS_CTR_DRBG_BLOCKSIZE); use_len = buf_len; while (use_len > 0) { mbedtls_xor(chain, chain, p, MBEDTLS_CTR_DRBG_BLOCKSIZE); p += MBEDTLS_CTR_DRBG_BLOCKSIZE; use_len -= (use_len >= MBEDTLS_CTR_DRBG_BLOCKSIZE) ? MBEDTLS_CTR_DRBG_BLOCKSIZE : use_len; if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, chain, chain)) != 0) { goto exit; } } memcpy(tmp + j, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE); /* * Update IV */ buf[3]++; } /* * Do final encryption with reduced data */ if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { goto exit; } iv = tmp + MBEDTLS_CTR_DRBG_KEYSIZE; p = output; for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) { if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, iv, iv)) != 0) { goto exit; } memcpy(p, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE); p += MBEDTLS_CTR_DRBG_BLOCKSIZE; } exit: mbedtls_aes_free(&aes_ctx); /* * tidy up the stack */ mbedtls_platform_zeroize(buf, sizeof(buf)); mbedtls_platform_zeroize(tmp, sizeof(tmp)); mbedtls_platform_zeroize(key, sizeof(key)); mbedtls_platform_zeroize(chain, sizeof(chain)); if (0 != ret) { /* * wipe partial seed from memory */ mbedtls_platform_zeroize(output, MBEDTLS_CTR_DRBG_SEEDLEN); } return ret; } /* CTR_DRBG_Update (SP 800-90A §10.2.1.2) * ctr_drbg_update_internal(ctx, provided_data) * implements * CTR_DRBG_Update(provided_data, Key, V) * with inputs and outputs * ctx->aes_ctx = Key * ctx->counter = V */ static int ctr_drbg_update_internal(mbedtls_ctr_drbg_context *ctx, const unsigned char data[MBEDTLS_CTR_DRBG_SEEDLEN]) { unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN]; unsigned char *p = tmp; int i, j; int ret = 0; memset(tmp, 0, MBEDTLS_CTR_DRBG_SEEDLEN); for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) { /* * Increase counter */ for (i = MBEDTLS_CTR_DRBG_BLOCKSIZE; i > 0; i--) { if (++ctx->counter[i - 1] != 0) { break; } } /* * Crypt counter block */ if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->counter, p)) != 0) { goto exit; } p += MBEDTLS_CTR_DRBG_BLOCKSIZE; } for (i = 0; i < MBEDTLS_CTR_DRBG_SEEDLEN; i++) { tmp[i] ^= data[i]; } /* * Update key and counter */ if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { goto exit; } memcpy(ctx->counter, tmp + MBEDTLS_CTR_DRBG_KEYSIZE, MBEDTLS_CTR_DRBG_BLOCKSIZE); exit: mbedtls_platform_zeroize(tmp, sizeof(tmp)); return ret; } /* CTR_DRBG_Instantiate with derivation function (SP 800-90A §10.2.1.3.2) * mbedtls_ctr_drbg_update(ctx, additional, add_len) * implements * CTR_DRBG_Instantiate(entropy_input, nonce, personalization_string, * security_strength) -> initial_working_state * with inputs * ctx->counter = all-bits-0 * ctx->aes_ctx = context from all-bits-0 key * additional[:add_len] = entropy_input || nonce || personalization_string * and with outputs * ctx = initial_working_state */ int mbedtls_ctr_drbg_update(mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t add_len) { unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN]; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (add_len == 0) { return 0; } if ((ret = block_cipher_df(add_input, additional, add_len)) != 0) { goto exit; } if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) { goto exit; } exit: mbedtls_platform_zeroize(add_input, sizeof(add_input)); return ret; } /* CTR_DRBG_Reseed with derivation function (SP 800-90A §10.2.1.4.2) * mbedtls_ctr_drbg_reseed(ctx, additional, len, nonce_len) * implements * CTR_DRBG_Reseed(working_state, entropy_input, additional_input) * -> new_working_state * with inputs * ctx contains working_state * additional[:len] = additional_input * and entropy_input comes from calling ctx->f_entropy * for (ctx->entropy_len + nonce_len) bytes * and with output * ctx contains new_working_state */ static int mbedtls_ctr_drbg_reseed_internal(mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t len, size_t nonce_len) { unsigned char seed[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT]; size_t seedlen = 0; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (ctx->entropy_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } if (nonce_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } if (len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len - nonce_len) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } memset(seed, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT); /* Gather entropy_len bytes of entropy to seed state. */ if (0 != ctx->f_entropy(ctx->p_entropy, seed, ctx->entropy_len)) { return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED; } seedlen += ctx->entropy_len; /* Gather entropy for a nonce if requested. */ if (nonce_len != 0) { if (0 != ctx->f_entropy(ctx->p_entropy, seed + seedlen, nonce_len)) { return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED; } seedlen += nonce_len; } /* Add additional data if provided. */ if (additional != NULL && len != 0) { memcpy(seed + seedlen, additional, len); seedlen += len; } /* Reduce to 384 bits. */ if ((ret = block_cipher_df(seed, seed, seedlen)) != 0) { goto exit; } /* Update state. */ if ((ret = ctr_drbg_update_internal(ctx, seed)) != 0) { goto exit; } ctx->reseed_counter = 1; exit: mbedtls_platform_zeroize(seed, sizeof(seed)); return ret; } int mbedtls_ctr_drbg_reseed(mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t len) { return mbedtls_ctr_drbg_reseed_internal(ctx, additional, len, 0); } /* Return a "good" nonce length for CTR_DRBG. The chosen nonce length * is sufficient to achieve the maximum security strength given the key * size and entropy length. If there is enough entropy in the initial * call to the entropy function to serve as both the entropy input and * the nonce, don't make a second call to get a nonce. */ static size_t good_nonce_len(size_t entropy_len) { if (entropy_len >= MBEDTLS_CTR_DRBG_KEYSIZE * 3 / 2) { return 0; } else { return (entropy_len + 1) / 2; } } /* CTR_DRBG_Instantiate with derivation function (SP 800-90A §10.2.1.3.2) * mbedtls_ctr_drbg_seed(ctx, f_entropy, p_entropy, custom, len) * implements * CTR_DRBG_Instantiate(entropy_input, nonce, personalization_string, * security_strength) -> initial_working_state * with inputs * custom[:len] = nonce || personalization_string * where entropy_input comes from f_entropy for ctx->entropy_len bytes * and with outputs * ctx = initial_working_state */ int mbedtls_ctr_drbg_seed(mbedtls_ctr_drbg_context *ctx, int (*f_entropy)(void *, unsigned char *, size_t), void *p_entropy, const unsigned char *custom, size_t len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE]; size_t nonce_len; memset(key, 0, MBEDTLS_CTR_DRBG_KEYSIZE); /* The mutex is initialized iff f_entropy is set. */ #if defined(MBEDTLS_THREADING_C) mbedtls_mutex_init(&ctx->mutex); #endif ctx->f_entropy = f_entropy; ctx->p_entropy = p_entropy; if (ctx->entropy_len == 0) { ctx->entropy_len = MBEDTLS_CTR_DRBG_ENTROPY_LEN; } /* ctx->reseed_counter contains the desired amount of entropy to * grab for a nonce (see mbedtls_ctr_drbg_set_nonce_len()). * If it's -1, indicating that the entropy nonce length was not set * explicitly, use a sufficiently large nonce for security. */ nonce_len = (ctx->reseed_counter >= 0 ? (size_t) ctx->reseed_counter : good_nonce_len(ctx->entropy_len)); /* Initialize with an empty key. */ if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) { return ret; } /* Do the initial seeding. */ if ((ret = mbedtls_ctr_drbg_reseed_internal(ctx, custom, len, nonce_len)) != 0) { return ret; } return 0; } /* CTR_DRBG_Generate with derivation function (SP 800-90A §10.2.1.5.2) * mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, additional, add_len) * implements * CTR_DRBG_Reseed(working_state, entropy_input, additional[:add_len]) * -> working_state_after_reseed * if required, then * CTR_DRBG_Generate(working_state_after_reseed, * requested_number_of_bits, additional_input) * -> status, returned_bits, new_working_state * with inputs * ctx contains working_state * requested_number_of_bits = 8 * output_len * additional[:add_len] = additional_input * and entropy_input comes from calling ctx->f_entropy * and with outputs * status = SUCCESS (this function does the reseed internally) * returned_bits = output[:output_len] * ctx contains new_working_state */ int mbedtls_ctr_drbg_random_with_add(void *p_rng, unsigned char *output, size_t output_len, const unsigned char *additional, size_t add_len) { int ret = 0; mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng; unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN]; unsigned char *p = output; unsigned char tmp[MBEDTLS_CTR_DRBG_BLOCKSIZE]; int i; size_t use_len; if (output_len > MBEDTLS_CTR_DRBG_MAX_REQUEST) { return MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG; } if (add_len > MBEDTLS_CTR_DRBG_MAX_INPUT) { return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; } memset(add_input, 0, MBEDTLS_CTR_DRBG_SEEDLEN); if (ctx->reseed_counter > ctx->reseed_interval || ctx->prediction_resistance) { if ((ret = mbedtls_ctr_drbg_reseed(ctx, additional, add_len)) != 0) { return ret; } add_len = 0; } if (add_len > 0) { if ((ret = block_cipher_df(add_input, additional, add_len)) != 0) { goto exit; } if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) { goto exit; } } while (output_len > 0) { /* * Increase counter */ for (i = MBEDTLS_CTR_DRBG_BLOCKSIZE; i > 0; i--) { if (++ctx->counter[i - 1] != 0) { break; } } /* * Crypt counter block */ if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->counter, tmp)) != 0) { goto exit; } use_len = (output_len > MBEDTLS_CTR_DRBG_BLOCKSIZE) ? MBEDTLS_CTR_DRBG_BLOCKSIZE : output_len; /* * Copy random block to destination */ memcpy(p, tmp, use_len); p += use_len; output_len -= use_len; } if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) { goto exit; } ctx->reseed_counter++; exit: mbedtls_platform_zeroize(add_input, sizeof(add_input)); mbedtls_platform_zeroize(tmp, sizeof(tmp)); return ret; } int mbedtls_ctr_drbg_random(void *p_rng, unsigned char *output, size_t output_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng; #if defined(MBEDTLS_THREADING_C) if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) { return ret; } #endif ret = mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, NULL, 0); #if defined(MBEDTLS_THREADING_C) if (mbedtls_mutex_unlock(&ctx->mutex) != 0) { return MBEDTLS_ERR_THREADING_MUTEX_ERROR; } #endif return ret; } #if defined(MBEDTLS_FS_IO) int mbedtls_ctr_drbg_write_seed_file(mbedtls_ctr_drbg_context *ctx, const char *path) { int ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; FILE *f; unsigned char buf[MBEDTLS_CTR_DRBG_MAX_INPUT]; if ((f = fopen(path, "wb")) == NULL) { return MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; } /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */ mbedtls_setbuf(f, NULL); if ((ret = mbedtls_ctr_drbg_random(ctx, buf, MBEDTLS_CTR_DRBG_MAX_INPUT)) != 0) { goto exit; } if (fwrite(buf, 1, MBEDTLS_CTR_DRBG_MAX_INPUT, f) != MBEDTLS_CTR_DRBG_MAX_INPUT) { ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; } else { ret = 0; } exit: mbedtls_platform_zeroize(buf, sizeof(buf)); fclose(f); return ret; } int mbedtls_ctr_drbg_update_seed_file(mbedtls_ctr_drbg_context *ctx, const char *path) { int ret = 0; FILE *f = NULL; size_t n; unsigned char buf[MBEDTLS_CTR_DRBG_MAX_INPUT]; unsigned char c; if ((f = fopen(path, "rb")) == NULL) { return MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; } /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */ mbedtls_setbuf(f, NULL); n = fread(buf, 1, sizeof(buf), f); if (fread(&c, 1, 1, f) != 0) { ret = MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG; goto exit; } if (n == 0 || ferror(f)) { ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR; goto exit; } fclose(f); f = NULL; ret = mbedtls_ctr_drbg_update(ctx, buf, n); exit: mbedtls_platform_zeroize(buf, sizeof(buf)); if (f != NULL) { fclose(f); } if (ret != 0) { return ret; } return mbedtls_ctr_drbg_write_seed_file(ctx, path); } #endif /* MBEDTLS_FS_IO */ #if defined(MBEDTLS_SELF_TEST) /* The CTR_DRBG NIST test vectors used here are available at * https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/drbg/drbgtestvectors.zip * * The parameters used to derive the test data are: * * [AES-128 use df] * [PredictionResistance = True/False] * [EntropyInputLen = 128] * [NonceLen = 64] * [PersonalizationStringLen = 128] * [AdditionalInputLen = 0] * [ReturnedBitsLen = 512] * * [AES-256 use df] * [PredictionResistance = True/False] * [EntropyInputLen = 256] * [NonceLen = 128] * [PersonalizationStringLen = 256] * [AdditionalInputLen = 0] * [ReturnedBitsLen = 512] * */ #if defined(MBEDTLS_CTR_DRBG_USE_128_BIT_KEY) static const unsigned char entropy_source_pr[] = { 0x04, 0xd9, 0x49, 0xa6, 0xdc, 0xe8, 0x6e, 0xbb, 0xf1, 0x08, 0x77, 0x2b, 0x9e, 0x08, 0xca, 0x92, 0x65, 0x16, 0xda, 0x99, 0xa2, 0x59, 0xf3, 0xe8, 0x38, 0x7e, 0x3f, 0x6b, 0x51, 0x70, 0x7b, 0x20, 0xec, 0x53, 0xd0, 0x66, 0xc3, 0x0f, 0xe3, 0xb0, 0xe0, 0x86, 0xa6, 0xaa, 0x5f, 0x72, 0x2f, 0xad, 0xf7, 0xef, 0x06, 0xb8, 0xd6, 0x9c, 0x9d, 0xe8 }; static const unsigned char entropy_source_nopr[] = { 0x07, 0x0d, 0x59, 0x63, 0x98, 0x73, 0xa5, 0x45, 0x27, 0x38, 0x22, 0x7b, 0x76, 0x85, 0xd1, 0xa9, 0x74, 0x18, 0x1f, 0x3c, 0x22, 0xf6, 0x49, 0x20, 0x4a, 0x47, 0xc2, 0xf3, 0x85, 0x16, 0xb4, 0x6f, 0x00, 0x2e, 0x71, 0xda, 0xed, 0x16, 0x9b, 0x5c }; static const unsigned char pers_pr[] = { 0xbf, 0xa4, 0x9a, 0x8f, 0x7b, 0xd8, 0xb1, 0x7a, 0x9d, 0xfa, 0x45, 0xed, 0x21, 0x52, 0xb3, 0xad }; static const unsigned char pers_nopr[] = { 0x4e, 0x61, 0x79, 0xd4, 0xc2, 0x72, 0xa1, 0x4c, 0xf1, 0x3d, 0xf6, 0x5e, 0xa3, 0xa6, 0xe5, 0x0f }; static const unsigned char result_pr[] = { 0xc9, 0x0a, 0xaf, 0x85, 0x89, 0x71, 0x44, 0x66, 0x4f, 0x25, 0x0b, 0x2b, 0xde, 0xd8, 0xfa, 0xff, 0x52, 0x5a, 0x1b, 0x32, 0x5e, 0x41, 0x7a, 0x10, 0x1f, 0xef, 0x1e, 0x62, 0x23, 0xe9, 0x20, 0x30, 0xc9, 0x0d, 0xad, 0x69, 0xb4, 0x9c, 0x5b, 0xf4, 0x87, 0x42, 0xd5, 0xae, 0x5e, 0x5e, 0x43, 0xcc, 0xd9, 0xfd, 0x0b, 0x93, 0x4a, 0xe3, 0xd4, 0x06, 0x37, 0x36, 0x0f, 0x3f, 0x72, 0x82, 0x0c, 0xcf }; static const unsigned char result_nopr[] = { 0x31, 0xc9, 0x91, 0x09, 0xf8, 0xc5, 0x10, 0x13, 0x3c, 0xd3, 0x96, 0xf9, 0xbc, 0x2c, 0x12, 0xc0, 0x7c, 0xc1, 0x61, 0x5f, 0xa3, 0x09, 0x99, 0xaf, 0xd7, 0xf2, 0x36, 0xfd, 0x40, 0x1a, 0x8b, 0xf2, 0x33, 0x38, 0xee, 0x1d, 0x03, 0x5f, 0x83, 0xb7, 0xa2, 0x53, 0xdc, 0xee, 0x18, 0xfc, 0xa7, 0xf2, 0xee, 0x96, 0xc6, 0xc2, 0xcd, 0x0c, 0xff, 0x02, 0x76, 0x70, 0x69, 0xaa, 0x69, 0xd1, 0x3b, 0xe8 }; #else /* MBEDTLS_CTR_DRBG_USE_128_BIT_KEY */ static const unsigned char entropy_source_pr[] = { 0xca, 0x58, 0xfd, 0xf2, 0xb9, 0x77, 0xcb, 0x49, 0xd4, 0xe0, 0x5b, 0xe2, 0x39, 0x50, 0xd9, 0x8a, 0x6a, 0xb3, 0xc5, 0x2f, 0xdf, 0x74, 0xd5, 0x85, 0x8f, 0xd1, 0xba, 0x64, 0x54, 0x7b, 0xdb, 0x1e, 0xc5, 0xea, 0x24, 0xc0, 0xfa, 0x0c, 0x90, 0x15, 0x09, 0x20, 0x92, 0x42, 0x32, 0x36, 0x45, 0x45, 0x7d, 0x20, 0x76, 0x6b, 0xcf, 0xa2, 0x15, 0xc8, 0x2f, 0x9f, 0xbc, 0x88, 0x3f, 0x80, 0xd1, 0x2c, 0xb7, 0x16, 0xd1, 0x80, 0x9e, 0xe1, 0xc9, 0xb3, 0x88, 0x1b, 0x21, 0x45, 0xef, 0xa1, 0x7f, 0xce, 0xc8, 0x92, 0x35, 0x55, 0x2a, 0xd9, 0x1d, 0x8e, 0x12, 0x38, 0xac, 0x01, 0x4e, 0x38, 0x18, 0x76, 0x9c, 0xf2, 0xb6, 0xd4, 0x13, 0xb6, 0x2c, 0x77, 0xc0, 0xe7, 0xe6, 0x0c, 0x47, 0x44, 0x95, 0xbe }; static const unsigned char entropy_source_nopr[] = { 0x4c, 0xfb, 0x21, 0x86, 0x73, 0x34, 0x6d, 0x9d, 0x50, 0xc9, 0x22, 0xe4, 0x9b, 0x0d, 0xfc, 0xd0, 0x90, 0xad, 0xf0, 0x4f, 0x5c, 0x3b, 0xa4, 0x73, 0x27, 0xdf, 0xcd, 0x6f, 0xa6, 0x3a, 0x78, 0x5c, 0x01, 0x69, 0x62, 0xa7, 0xfd, 0x27, 0x87, 0xa2, 0x4b, 0xf6, 0xbe, 0x47, 0xef, 0x37, 0x83, 0xf1, 0xb7, 0xec, 0x46, 0x07, 0x23, 0x63, 0x83, 0x4a, 0x1b, 0x01, 0x33, 0xf2, 0xc2, 0x38, 0x91, 0xdb, 0x4f, 0x11, 0xa6, 0x86, 0x51, 0xf2, 0x3e, 0x3a, 0x8b, 0x1f, 0xdc, 0x03, 0xb1, 0x92, 0xc7, 0xe7 }; static const unsigned char pers_pr[] = { 0x5a, 0x70, 0x95, 0xe9, 0x81, 0x40, 0x52, 0x33, 0x91, 0x53, 0x7e, 0x75, 0xd6, 0x19, 0x9d, 0x1e, 0xad, 0x0d, 0xc6, 0xa7, 0xde, 0x6c, 0x1f, 0xe0, 0xea, 0x18, 0x33, 0xa8, 0x7e, 0x06, 0x20, 0xe9 }; static const unsigned char pers_nopr[] = { 0x88, 0xee, 0xb8, 0xe0, 0xe8, 0x3b, 0xf3, 0x29, 0x4b, 0xda, 0xcd, 0x60, 0x99, 0xeb, 0xe4, 0xbf, 0x55, 0xec, 0xd9, 0x11, 0x3f, 0x71, 0xe5, 0xeb, 0xcb, 0x45, 0x75, 0xf3, 0xd6, 0xa6, 0x8a, 0x6b }; static const unsigned char result_pr[] = { 0xce, 0x2f, 0xdb, 0xb6, 0xd9, 0xb7, 0x39, 0x85, 0x04, 0xc5, 0xc0, 0x42, 0xc2, 0x31, 0xc6, 0x1d, 0x9b, 0x5a, 0x59, 0xf8, 0x7e, 0x0d, 0xcc, 0x62, 0x7b, 0x65, 0x11, 0x55, 0x10, 0xeb, 0x9e, 0x3d, 0xa4, 0xfb, 0x1c, 0x6a, 0x18, 0xc0, 0x74, 0xdb, 0xdd, 0xe7, 0x02, 0x23, 0x63, 0x21, 0xd0, 0x39, 0xf9, 0xa7, 0xc4, 0x52, 0x84, 0x3b, 0x49, 0x40, 0x72, 0x2b, 0xb0, 0x6c, 0x9c, 0xdb, 0xc3, 0x43 }; static const unsigned char result_nopr[] = { 0xa5, 0x51, 0x80, 0xa1, 0x90, 0xbe, 0xf3, 0xad, 0xaf, 0x28, 0xf6, 0xb7, 0x95, 0xe9, 0xf1, 0xf3, 0xd6, 0xdf, 0xa1, 0xb2, 0x7d, 0xd0, 0x46, 0x7b, 0x0c, 0x75, 0xf5, 0xfa, 0x93, 0x1e, 0x97, 0x14, 0x75, 0xb2, 0x7c, 0xae, 0x03, 0xa2, 0x96, 0x54, 0xe2, 0xf4, 0x09, 0x66, 0xea, 0x33, 0x64, 0x30, 0x40, 0xd1, 0x40, 0x0f, 0xe6, 0x77, 0x87, 0x3a, 0xf8, 0x09, 0x7c, 0x1f, 0xe9, 0xf0, 0x02, 0x98 }; #endif /* MBEDTLS_CTR_DRBG_USE_128_BIT_KEY */ static size_t test_offset; static int ctr_drbg_self_test_entropy(void *data, unsigned char *buf, size_t len) { const unsigned char *p = data; memcpy(buf, p + test_offset, len); test_offset += len; return 0; } #define CHK(c) if ((c) != 0) \ { \ if (verbose != 0) \ mbedtls_printf("failed\n"); \ return 1; \ } #define SELF_TEST_OUTPUT_DISCARD_LENGTH 64 /* * Checkup routine */ int mbedtls_ctr_drbg_self_test(int verbose) { mbedtls_ctr_drbg_context ctx; unsigned char buf[sizeof(result_pr)]; mbedtls_ctr_drbg_init(&ctx); /* * Based on a NIST CTR_DRBG test vector (PR = True) */ if (verbose != 0) { mbedtls_printf(" CTR_DRBG (PR = TRUE) : "); } test_offset = 0; mbedtls_ctr_drbg_set_entropy_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE); mbedtls_ctr_drbg_set_nonce_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE / 2); CHK(mbedtls_ctr_drbg_seed(&ctx, ctr_drbg_self_test_entropy, (void *) entropy_source_pr, pers_pr, MBEDTLS_CTR_DRBG_KEYSIZE)); mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON); CHK(mbedtls_ctr_drbg_random(&ctx, buf, SELF_TEST_OUTPUT_DISCARD_LENGTH)); CHK(mbedtls_ctr_drbg_random(&ctx, buf, sizeof(result_pr))); CHK(memcmp(buf, result_pr, sizeof(result_pr))); mbedtls_ctr_drbg_free(&ctx); if (verbose != 0) { mbedtls_printf("passed\n"); } /* * Based on a NIST CTR_DRBG test vector (PR = FALSE) */ if (verbose != 0) { mbedtls_printf(" CTR_DRBG (PR = FALSE): "); } mbedtls_ctr_drbg_init(&ctx); test_offset = 0; mbedtls_ctr_drbg_set_entropy_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE); mbedtls_ctr_drbg_set_nonce_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE / 2); CHK(mbedtls_ctr_drbg_seed(&ctx, ctr_drbg_self_test_entropy, (void *) entropy_source_nopr, pers_nopr, MBEDTLS_CTR_DRBG_KEYSIZE)); CHK(mbedtls_ctr_drbg_reseed(&ctx, NULL, 0)); CHK(mbedtls_ctr_drbg_random(&ctx, buf, SELF_TEST_OUTPUT_DISCARD_LENGTH)); CHK(mbedtls_ctr_drbg_random(&ctx, buf, sizeof(result_nopr))); CHK(memcmp(buf, result_nopr, sizeof(result_nopr))); mbedtls_ctr_drbg_free(&ctx); if (verbose != 0) { mbedtls_printf("passed\n"); } if (verbose != 0) { mbedtls_printf("\n"); } return 0; } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_CTR_DRBG_C */