/* BEGIN_HEADER */ #include #include #include #include "mbedtls/bignum.h" #include "mbedtls/asn1.h" #if defined(MBEDTLS_ASN1_WRITE_C) #include "mbedtls/asn1write.h" #endif /* Used internally to report an error that indicates a bug in a parsing function. */ #define ERR_PARSE_INCONSISTENCY INT_MAX /* Use this magic value in some tests to indicate that the expected result * should not be checked. */ #define UNPREDICTABLE_RESULT 0x5552 static int nested_parse( unsigned char **const p, const unsigned char *const end ) { int ret; size_t len = 0; size_t len2 = 0; unsigned char *const start = *p; unsigned char *content_start; unsigned char tag; /* First get the length, skipping over the tag. */ content_start = start + 1; ret = mbedtls_asn1_get_len( &content_start, end, &len ); TEST_ASSERT( content_start <= end ); if( ret != 0 ) return( ret ); /* Since we have a valid element start (tag and length), retrieve and * check the tag. */ tag = start[0]; TEST_EQUAL( mbedtls_asn1_get_tag( p, end, &len2, tag ^ 1 ), MBEDTLS_ERR_ASN1_UNEXPECTED_TAG ); *p = start; TEST_EQUAL( mbedtls_asn1_get_tag( p, end, &len2, tag ), 0 ); TEST_EQUAL( len, len2 ); TEST_ASSERT( *p == content_start ); *p = content_start; switch( tag & 0x1f ) { case MBEDTLS_ASN1_BOOLEAN: { int val = -257; *p = start; ret = mbedtls_asn1_get_bool( p, end, &val ); if( ret == 0 ) TEST_ASSERT( val == 0 || val == 1 ); break; } case MBEDTLS_ASN1_INTEGER: { #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi mpi; mbedtls_mpi_init( &mpi ); *p = start; ret = mbedtls_asn1_get_mpi( p, end, &mpi ); mbedtls_mpi_free( &mpi ); #else *p = start + 1; ret = mbedtls_asn1_get_len( p, end, &len ); *p += len; #endif /* If we're sure that the number fits in an int, also * call mbedtls_asn1_get_int(). */ if( ret == 0 && len < sizeof( int ) ) { int val = -257; unsigned char *q = start; ret = mbedtls_asn1_get_int( &q, end, &val ); TEST_ASSERT( *p == q ); } break; } case MBEDTLS_ASN1_BIT_STRING: { mbedtls_asn1_bitstring bs; *p = start; ret = mbedtls_asn1_get_bitstring( p, end, &bs ); break; } case MBEDTLS_ASN1_SEQUENCE: { while( *p <= end && *p < content_start + len && ret == 0 ) ret = nested_parse( p, content_start + len ); break; } case MBEDTLS_ASN1_OCTET_STRING: case MBEDTLS_ASN1_NULL: case MBEDTLS_ASN1_OID: case MBEDTLS_ASN1_UTF8_STRING: case MBEDTLS_ASN1_SET: case MBEDTLS_ASN1_PRINTABLE_STRING: case MBEDTLS_ASN1_T61_STRING: case MBEDTLS_ASN1_IA5_STRING: case MBEDTLS_ASN1_UTC_TIME: case MBEDTLS_ASN1_GENERALIZED_TIME: case MBEDTLS_ASN1_UNIVERSAL_STRING: case MBEDTLS_ASN1_BMP_STRING: default: /* No further testing implemented for this tag. */ *p += len; return( 0 ); } TEST_ASSERT( *p <= end ); return( ret ); exit: return( ERR_PARSE_INCONSISTENCY ); } int get_len_step( const data_t *input, size_t buffer_size, size_t actual_length ) { unsigned char *buf = NULL; unsigned char *p = NULL; unsigned char *end; size_t parsed_length; int ret; mbedtls_test_set_step( buffer_size ); /* Allocate a new buffer of exactly the length to parse each time. * This gives memory sanitizers a chance to catch buffer overreads. */ if( buffer_size == 0 ) { ASSERT_ALLOC( buf, 1 ); end = buf + 1; p = end; } else { ASSERT_ALLOC_WEAK( buf, buffer_size ); if( buffer_size > input->len ) { memcpy( buf, input->x, input->len ); memset( buf + input->len, 'A', buffer_size - input->len ); } else { memcpy( buf, input->x, buffer_size ); } p = buf; end = buf + buffer_size; } ret = mbedtls_asn1_get_len( &p, end, &parsed_length ); if( buffer_size >= input->len + actual_length ) { TEST_EQUAL( ret, 0 ); TEST_ASSERT( p == buf + input->len ); TEST_EQUAL( parsed_length, actual_length ); } else { TEST_EQUAL( ret, MBEDTLS_ERR_ASN1_OUT_OF_DATA ); } mbedtls_free( buf ); return( 1 ); exit: mbedtls_free( buf ); return( 0 ); } typedef struct { const unsigned char *input_start; const char *description; } traverse_state_t; /* Value returned by traverse_callback if description runs out. */ #define RET_TRAVERSE_STOP 1 /* Value returned by traverse_callback if description has an invalid format * (see traverse_sequence_of). */ #define RET_TRAVERSE_ERROR 2 static int traverse_callback( void *ctx, int tag, unsigned char *content, size_t len ) { traverse_state_t *state = ctx; size_t offset; const char *rest = state->description; unsigned long n; TEST_ASSERT( content > state->input_start ); offset = content - state->input_start; mbedtls_test_set_step( offset ); if( *rest == 0 ) return( RET_TRAVERSE_STOP ); n = strtoul( rest, (char **) &rest, 0 ); TEST_EQUAL( n, offset ); TEST_EQUAL( *rest, ',' ); ++rest; n = strtoul( rest, (char **) &rest, 0 ); TEST_EQUAL( n, (unsigned) tag ); TEST_EQUAL( *rest, ',' ); ++rest; n = strtoul( rest, (char **) &rest, 0 ); TEST_EQUAL( n, len ); if( *rest == ',' ) ++rest; state->description = rest; return( 0 ); exit: return( RET_TRAVERSE_ERROR ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_ASN1_PARSE_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void parse_prefixes( const data_t *input, int full_result, int overfull_result ) { /* full_result: expected result from parsing the given string. */ /* overfull_result: expected_result from parsing the given string plus * some trailing garbage. This may be UNPREDICTABLE_RESULT to accept * any result: use this for invalid inputs that may or may not become * valid depending on what the trailing garbage is. */ unsigned char *buf = NULL; unsigned char *p = NULL; size_t buffer_size; int ret; /* Test every prefix of the input, except the empty string. * The first byte of the string is the tag. Without a tag byte, * we wouldn't know what to parse the input as. * Also test the input followed by an extra byte. */ for( buffer_size = 1; buffer_size <= input->len + 1; buffer_size++ ) { mbedtls_test_set_step( buffer_size ); /* Allocate a new buffer of exactly the length to parse each time. * This gives memory sanitizers a chance to catch buffer overreads. */ ASSERT_ALLOC( buf, buffer_size ); memcpy( buf, input->x, buffer_size ); p = buf; ret = nested_parse( &p, buf + buffer_size ); if( ret == ERR_PARSE_INCONSISTENCY ) goto exit; if( buffer_size < input->len ) { TEST_EQUAL( ret, MBEDTLS_ERR_ASN1_OUT_OF_DATA ); } else if( buffer_size == input->len ) { TEST_EQUAL( ret, full_result ); } else /* ( buffer_size > input->len ) */ { if( overfull_result != UNPREDICTABLE_RESULT ) TEST_EQUAL( ret, overfull_result ); } if( ret == 0 ) TEST_ASSERT( p == buf + input->len ); mbedtls_free( buf ); buf = NULL; } exit: mbedtls_free( buf ); } /* END_CASE */ /* BEGIN_CASE */ void get_len( const data_t *input, int actual_length_arg ) { size_t actual_length = actual_length_arg; size_t buffer_size; /* Test prefixes of a buffer containing the given length string * followed by `actual_length` bytes of payload. To save a bit of * time, we skip some "boring" prefixes: we don't test prefixes where * the payload is truncated more than one byte away from either end, * and we only test the empty string on a 1-byte input. */ for( buffer_size = 1; buffer_size <= input->len + 1; buffer_size++ ) { if( ! get_len_step( input, buffer_size, actual_length ) ) goto exit; } if( ! get_len_step( input, input->len + actual_length - 1, actual_length ) ) goto exit; if( ! get_len_step( input, input->len + actual_length, actual_length ) ) goto exit; } /* END_CASE */ /* BEGIN_CASE */ void get_boolean( const data_t *input, int expected_value, int expected_result ) { unsigned char *p = input->x; int val; int ret; ret = mbedtls_asn1_get_bool( &p, input->x + input->len, &val ); TEST_EQUAL( ret, expected_result ); if( expected_result == 0 ) { TEST_EQUAL( val, expected_value ); TEST_ASSERT( p == input->x + input->len ); } } /* END_CASE */ /* BEGIN_CASE */ void empty_integer( const data_t *input ) { unsigned char *p; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi actual_mpi; #endif int val; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_init( & actual_mpi ); #endif /* An INTEGER with no content is not valid. */ p = input->x; TEST_EQUAL( mbedtls_asn1_get_int( &p, input->x + input->len, &val ), MBEDTLS_ERR_ASN1_INVALID_LENGTH ); #if defined(MBEDTLS_BIGNUM_C) /* INTEGERs are sometimes abused as bitstrings, so the library accepts * an INTEGER with empty content and gives it the value 0. */ p = input->x; TEST_EQUAL( mbedtls_asn1_get_mpi( &p, input->x + input->len, &actual_mpi ), 0 ); TEST_EQUAL( mbedtls_mpi_cmp_int( &actual_mpi, 0 ), 0 ); #endif exit: #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_free( &actual_mpi ); #endif /*empty cleanup in some configurations*/ ; } /* END_CASE */ /* BEGIN_CASE */ void get_integer( const data_t *input, const char *expected_hex, int expected_result ) { unsigned char *p; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi expected_mpi; mbedtls_mpi actual_mpi; mbedtls_mpi complement; int expected_result_for_mpi = expected_result; #endif long expected_value; int expected_result_for_int = expected_result; int val; int ret; #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_init( &expected_mpi ); mbedtls_mpi_init( &actual_mpi ); mbedtls_mpi_init( &complement ); #endif errno = 0; expected_value = strtol( expected_hex, NULL, 16 ); if( expected_result == 0 && ( errno == ERANGE #if LONG_MAX > INT_MAX || expected_value > INT_MAX || expected_value < INT_MIN #endif ) ) { /* The library returns the dubious error code INVALID_LENGTH * for integers that are out of range. */ expected_result_for_int = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } if( expected_result == 0 && expected_value < 0 ) { /* The library does not support negative INTEGERs and * returns the dubious error code INVALID_LENGTH. * Test that we preserve the historical behavior. If we * decide to change the behavior, we'll also change this test. */ expected_result_for_int = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } p = input->x; ret = mbedtls_asn1_get_int( &p, input->x + input->len, &val ); TEST_EQUAL( ret, expected_result_for_int ); if( ret == 0 ) { TEST_EQUAL( val, expected_value ); TEST_ASSERT( p == input->x + input->len ); } #if defined(MBEDTLS_BIGNUM_C) ret = mbedtls_mpi_read_string( &expected_mpi, 16, expected_hex ); TEST_ASSERT( ret == 0 || ret == MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); if( ret == MBEDTLS_ERR_MPI_BAD_INPUT_DATA ) { /* The data overflows the maximum MPI size. */ expected_result_for_mpi = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; } p = input->x; ret = mbedtls_asn1_get_mpi( &p, input->x + input->len, &actual_mpi ); TEST_EQUAL( ret, expected_result_for_mpi ); if( ret == 0 ) { if( expected_value >= 0 ) { TEST_ASSERT( mbedtls_mpi_cmp_mpi( &actual_mpi, &expected_mpi ) == 0 ); } else { /* The library ignores the sign bit in ASN.1 INTEGERs * (which makes sense insofar as INTEGERs are sometimes * abused as bit strings), so the result of parsing them * is a positive integer such that expected_mpi + * actual_mpi = 2^n where n is the length of the content * of the INTEGER. (Leading ff octets don't matter for the * expected value, but they matter for the actual value.) * Test that we don't change from this behavior. If we * decide to fix the library to change the behavior on * negative INTEGERs, we'll fix this test code. */ unsigned char *q = input->x + 1; size_t len; TEST_ASSERT( mbedtls_asn1_get_len( &q, input->x + input->len, &len ) == 0 ); TEST_ASSERT( mbedtls_mpi_lset( &complement, 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_shift_l( &complement, len * 8 ) == 0 ); TEST_ASSERT( mbedtls_mpi_add_mpi( &complement, &complement, &expected_mpi ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &complement, &actual_mpi ) == 0 ); } TEST_ASSERT( p == input->x + input->len ); } #endif exit: #if defined(MBEDTLS_BIGNUM_C) mbedtls_mpi_free( &expected_mpi ); mbedtls_mpi_free( &actual_mpi ); mbedtls_mpi_free( &complement ); #endif /*empty cleanup in some configurations*/ ; } /* END_CASE */ /* BEGIN_CASE */ void get_enum( const data_t *input, const char *expected_hex, int expected_result ) { unsigned char *p; long expected_value; int expected_result_for_enum = expected_result; int val; int ret; errno = 0; expected_value = strtol( expected_hex, NULL, 16 ); if( expected_result == 0 && ( errno == ERANGE #if LONG_MAX > INT_MAX || expected_value > INT_MAX || expected_value < INT_MIN #endif ) ) { /* The library returns the dubious error code INVALID_LENGTH * for integers that are out of range. */ expected_result_for_enum = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } if( expected_result == 0 && expected_value < 0 ) { /* The library does not support negative INTEGERs and * returns the dubious error code INVALID_LENGTH. * Test that we preserve the historical behavior. If we * decide to change the behavior, we'll also change this test. */ expected_result_for_enum = MBEDTLS_ERR_ASN1_INVALID_LENGTH; } p = input->x; ret = mbedtls_asn1_get_enum( &p, input->x + input->len, &val ); TEST_EQUAL( ret, expected_result_for_enum ); if( ret == 0 ) { TEST_EQUAL( val, expected_value ); TEST_ASSERT( p == input->x + input->len ); } } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_BIGNUM_C */ void get_mpi_too_large( ) { unsigned char *buf = NULL; unsigned char *p; mbedtls_mpi actual_mpi; size_t too_many_octets = MBEDTLS_MPI_MAX_LIMBS * sizeof(mbedtls_mpi_uint) + 1; size_t size = too_many_octets + 6; mbedtls_mpi_init( &actual_mpi ); ASSERT_ALLOC( buf, size ); buf[0] = 0x02; /* tag: INTEGER */ buf[1] = 0x84; /* 4-octet length */ buf[2] = ( too_many_octets >> 24 ) & 0xff; buf[3] = ( too_many_octets >> 16 ) & 0xff; buf[4] = ( too_many_octets >> 8 ) & 0xff; buf[5] = too_many_octets & 0xff; buf[6] = 0x01; /* most significant octet */ p = buf; TEST_EQUAL( mbedtls_asn1_get_mpi( &p, buf + size, &actual_mpi ), MBEDTLS_ERR_MPI_ALLOC_FAILED ); exit: mbedtls_mpi_free( &actual_mpi ); mbedtls_free( buf ); } /* END_CASE */ /* BEGIN_CASE */ void get_bitstring( const data_t *input, int expected_length, int expected_unused_bits, int expected_result, int expected_result_null ) { mbedtls_asn1_bitstring bs = { 0xdead, 0x21, NULL }; unsigned char *p = input->x; TEST_EQUAL( mbedtls_asn1_get_bitstring( &p, input->x + input->len, &bs ), expected_result ); if( expected_result == 0 ) { TEST_EQUAL( bs.len, (size_t) expected_length ); TEST_EQUAL( bs.unused_bits, expected_unused_bits ); TEST_ASSERT( bs.p != NULL ); TEST_EQUAL( bs.p - input->x + bs.len, input->len ); TEST_ASSERT( p == input->x + input->len ); } p = input->x; TEST_EQUAL( mbedtls_asn1_get_bitstring_null( &p, input->x + input->len, &bs.len ), expected_result_null ); if( expected_result_null == 0 ) { TEST_EQUAL( bs.len, (size_t) expected_length ); if( expected_result == 0 ) TEST_ASSERT( p == input->x + input->len - bs.len ); } } /* END_CASE */ /* BEGIN_CASE */ void get_sequence_of( const data_t *input, int tag, const char *description, int expected_result ) { /* The description string is a comma-separated list of integers. * For each element in the SEQUENCE in input, description contains * two integers: the offset of the element (offset from the start * of input to the tag of the element) and the length of the * element's contents. * "offset1,length1,..." */ mbedtls_asn1_sequence head = { { 0, 0, NULL }, NULL }; mbedtls_asn1_sequence *cur; unsigned char *p = input->x; const char *rest = description; unsigned long n; TEST_EQUAL( mbedtls_asn1_get_sequence_of( &p, input->x + input->len, &head, tag ), expected_result ); if( expected_result == 0 ) { TEST_ASSERT( p == input->x + input->len ); if( ! *rest ) { TEST_EQUAL( head.buf.tag, 0 ); TEST_ASSERT( head.buf.p == NULL ); TEST_EQUAL( head.buf.len, 0 ); TEST_ASSERT( head.next == NULL ); } else { cur = &head; while( *rest ) { ++test_info.step; TEST_ASSERT( cur != NULL ); TEST_EQUAL( cur->buf.tag, tag ); n = strtoul( rest, (char **) &rest, 0 ); TEST_EQUAL( n, (size_t)( cur->buf.p - input->x ) ); ++rest; n = strtoul( rest, (char **) &rest, 0 ); TEST_EQUAL( n, cur->buf.len ); if( *rest ) ++rest; cur = cur->next; } TEST_ASSERT( cur == NULL ); } } exit: mbedtls_asn1_sequence_free( head.next ); } /* END_CASE */ /* BEGIN_CASE */ void traverse_sequence_of( const data_t *input, int tag_must_mask, int tag_must_val, int tag_may_mask, int tag_may_val, const char *description, int expected_result ) { /* The description string is a comma-separated list of integers. * For each element in the SEQUENCE in input, description contains * three integers: the offset of the element's content (offset from * the start of input to the content of the element), the element's tag, * and the length of the element's contents. * "offset1,tag1,length1,..." */ unsigned char *p = input->x; traverse_state_t traverse_state = {input->x, description}; int ret; ret = mbedtls_asn1_traverse_sequence_of( &p, input->x + input->len, (uint8_t) tag_must_mask, (uint8_t) tag_must_val, (uint8_t) tag_may_mask, (uint8_t) tag_may_val, traverse_callback, &traverse_state ); if( ret == RET_TRAVERSE_ERROR ) goto exit; TEST_EQUAL( ret, expected_result ); TEST_EQUAL( *traverse_state.description, 0 ); } /* END_CASE */ /* BEGIN_CASE */ void get_alg( const data_t *input, int oid_offset, int oid_length, int params_tag, int params_offset, int params_length, int total_length, int expected_result ) { mbedtls_asn1_buf oid = { -1, 0, NULL }; mbedtls_asn1_buf params = { -1, 0, NULL }; unsigned char *p = input->x; int ret; TEST_EQUAL( mbedtls_asn1_get_alg( &p, input->x + input->len, &oid, ¶ms ), expected_result ); if( expected_result == 0 ) { TEST_EQUAL( oid.tag, MBEDTLS_ASN1_OID ); TEST_EQUAL( oid.p - input->x, oid_offset ); TEST_EQUAL( oid.len, (size_t) oid_length ); TEST_EQUAL( params.tag, params_tag ); if( params_offset != 0 ) TEST_EQUAL( params.p - input->x, params_offset ); else TEST_ASSERT( params.p == NULL ); TEST_EQUAL( params.len, (size_t) params_length ); TEST_EQUAL( p - input->x, total_length ); } ret = mbedtls_asn1_get_alg_null( &p, input->x + input->len, &oid ); if( expected_result == 0 && params_offset == 0 ) { TEST_EQUAL( oid.tag, MBEDTLS_ASN1_OID ); TEST_EQUAL( oid.p - input->x, oid_offset ); TEST_EQUAL( oid.len, (size_t) oid_length ); TEST_EQUAL( p - input->x, total_length ); } else TEST_ASSERT( ret != 0 ); } /* END_CASE */ /* BEGIN_CASE */ void find_named_data( data_t *oid0, data_t *oid1, data_t *oid2, data_t *oid3, data_t *needle, int from, int position ) { mbedtls_asn1_named_data nd[] ={ { {0x06, oid0->len, oid0->x}, {0, 0, NULL}, NULL, 0 }, { {0x06, oid1->len, oid1->x}, {0, 0, NULL}, NULL, 0 }, { {0x06, oid2->len, oid2->x}, {0, 0, NULL}, NULL, 0 }, { {0x06, oid3->len, oid3->x}, {0, 0, NULL}, NULL, 0 }, }; mbedtls_asn1_named_data *pointers[ARRAY_LENGTH( nd ) + 1]; size_t i; mbedtls_asn1_named_data *found; for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) pointers[i] = &nd[i]; pointers[ARRAY_LENGTH( nd )] = NULL; for( i = 0; i < ARRAY_LENGTH( nd ); i++ ) nd[i].next = pointers[i+1]; found = mbedtls_asn1_find_named_data( pointers[from], (const char *) needle->x, needle->len ); TEST_ASSERT( found == pointers[position] ); } /* END_CASE */ /* BEGIN_CASE */ void free_named_data_null( ) { mbedtls_asn1_free_named_data( NULL ); goto exit; /* Silence unused label warning */ } /* END_CASE */ /* BEGIN_CASE */ void free_named_data( int with_oid, int with_val, int with_next ) { mbedtls_asn1_named_data next = { {0x06, 0, NULL}, {0, 0xcafe, NULL}, NULL, 0 }; mbedtls_asn1_named_data head = { {0x06, 0, NULL}, {0, 0, NULL}, NULL, 0 }; if( with_oid ) ASSERT_ALLOC( head.oid.p, 1 ); if( with_val ) ASSERT_ALLOC( head.val.p, 1 ); if( with_next ) head.next = &next; mbedtls_asn1_free_named_data( &head ); TEST_ASSERT( head.oid.p == NULL ); TEST_ASSERT( head.val.p == NULL ); TEST_ASSERT( head.next == NULL ); TEST_ASSERT( next.val.len == 0xcafe ); exit: mbedtls_free( head.oid.p ); mbedtls_free( head.val.p ); } /* END_CASE */ /* BEGIN_CASE */ void free_named_data_list( int length ) { mbedtls_asn1_named_data *head = NULL; int i; for( i = 0; i < length; i++ ) { mbedtls_asn1_named_data *new = NULL; ASSERT_ALLOC( new, sizeof( mbedtls_asn1_named_data ) ); new->next = head; head = new; } mbedtls_asn1_free_named_data_list( &head ); TEST_ASSERT( head == NULL ); /* Most of the point of the test is that it doesn't leak memory. * So this test is only really useful under a memory leak detection * framework. */ exit: mbedtls_asn1_free_named_data_list( &head ); } /* END_CASE */