/** * \file psa/crypto.h * \brief Platform Security Architecture cryptography module */ /* * Copyright (C) 2018, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef PSA_CRYPTO_H #define PSA_CRYPTO_H #include "crypto_platform.h" #include #ifdef __DOXYGEN_ONLY__ /* This __DOXYGEN_ONLY__ block contains mock definitions for things that * must be defined in the crypto_platform.h header. These mock definitions * are present in this file as a convenience to generate pretty-printed * documentation that includes those definitions. */ /** \defgroup platform Implementation-specific definitions * @{ */ /** \brief Key handle. * * This type represents open handles to keys. It must be an unsigned integral * type. The choice of type is implementation-dependent. * * 0 is not a valid key handle. How other handle values are assigned is * implementation-dependent. */ typedef _unsigned_integral_type_ psa_key_handle_t; /**@}*/ #endif /* __DOXYGEN_ONLY__ */ #ifdef __cplusplus extern "C" { #endif /* The file "crypto_types.h" declares types that encode errors, * algorithms, key types, policies, etc. */ #include "crypto_types.h" /* The file "crypto_values.h" declares macros to build and analyze values * of integral types defined in "crypto_types.h". */ #include "crypto_values.h" /** \defgroup initialization Library initialization * @{ */ /** * \brief Library initialization. * * Applications must call this function before calling any other * function in this module. * * Applications may call this function more than once. Once a call * succeeds, subsequent calls are guaranteed to succeed. * * If the application calls other functions before calling psa_crypto_init(), * the behavior is undefined. Implementations are encouraged to either perform * the operation as if the library had been initialized or to return * #PSA_ERROR_BAD_STATE or some other applicable error. In particular, * implementations should not return a success status if the lack of * initialization may have security implications, for example due to improper * seeding of the random number generator. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_crypto_init(void); /**@}*/ /** \defgroup policy Key policies * @{ */ /** The type of the key policy data structure. * * Before calling any function on a key policy, the application must initialize * it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_key_policy_t policy; * memset(&policy, 0, sizeof(policy)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_key_policy_t policy = {0}; * \endcode * - Initialize the structure to the initializer #PSA_KEY_POLICY_INIT, * for example: * \code * psa_key_policy_t policy = PSA_KEY_POLICY_INIT; * \endcode * - Assign the result of the function psa_key_policy_init() * to the structure, for example: * \code * psa_key_policy_t policy; * policy = psa_key_policy_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_key_policy_s psa_key_policy_t; /** \def PSA_KEY_POLICY_INIT * * This macro returns a suitable initializer for a key policy object of type * #psa_key_policy_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_KEY_POLICY_INIT {0} #endif /** Return an initial value for a key policy that forbids all usage of the key. */ static psa_key_policy_t psa_key_policy_init(void); /** \brief Set the standard fields of a policy structure. * * Note that this function does not make any consistency check of the * parameters. The values are only checked when applying the policy to * a key slot with psa_set_key_policy(). * * \param[in,out] policy The key policy to modify. It must have been * initialized as per the documentation for * #psa_key_policy_t. * \param usage The permitted uses for the key. * \param alg The algorithm that the key may be used for. */ void psa_key_policy_set_usage(psa_key_policy_t *policy, psa_key_usage_t usage, psa_algorithm_t alg); /** \brief Retrieve the usage field of a policy structure. * * \param[in] policy The policy object to query. * * \return The permitted uses for a key with this policy. */ psa_key_usage_t psa_key_policy_get_usage(const psa_key_policy_t *policy); /** \brief Retrieve the algorithm field of a policy structure. * * \param[in] policy The policy object to query. * * \return The permitted algorithm for a key with this policy. */ psa_algorithm_t psa_key_policy_get_algorithm(const psa_key_policy_t *policy); /** \brief Set the usage policy on a key slot. * * This function must be called on an empty key slot, before importing, * generating or creating a key in the slot. Changing the policy of an * existing key is not permitted. * * Implementations may set restrictions on supported key policies * depending on the key type and the key slot. * * \param handle Handle to the key whose policy is to be changed. * \param[in] policy The policy object to query. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, it is implementation-defined whether * the policy has been saved to persistent storage. Implementations * may defer saving the policy until the key material is created. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_ALREADY_EXISTS * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_set_key_policy(psa_key_handle_t handle, const psa_key_policy_t *policy); /** \brief Get the usage policy for a key slot. * * \param handle Handle to the key slot whose policy is being queried. * \param[out] policy On success, the key's policy. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_get_key_policy(psa_key_handle_t handle, psa_key_policy_t *policy); /**@}*/ /** \defgroup key_management Key management * @{ */ /** \brief Retrieve the lifetime of an open key. * * \param handle Handle to query. * \param[out] lifetime On success, the lifetime value. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_get_key_lifetime(psa_key_handle_t handle, psa_key_lifetime_t *lifetime); /** Allocate a key slot for a transient key, i.e. a key which is only stored * in volatile memory. * * The allocated key slot and its handle remain valid until the * application calls psa_close_key() or psa_destroy_key() or until the * application terminates. * * \param[out] handle On success, a handle to a volatile key slot. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the newly allocated key slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * There was not enough memory, or the maximum number of key slots * has been reached. */ psa_status_t psa_allocate_key(psa_key_handle_t *handle); /** Open a handle to an existing persistent key. * * Open a handle to a key which was previously created with psa_create_key(). * * \param lifetime The lifetime of the key. This designates a storage * area where the key material is stored. This must not * be #PSA_KEY_LIFETIME_VOLATILE. * \param id The persistent identifier of the key. * \param[out] handle On success, a handle to a key slot which contains * the data and metadata loaded from the specified * persistent location. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the newly allocated key slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_INVALID_ARGUMENT * \p lifetime is invalid, for example #PSA_KEY_LIFETIME_VOLATILE. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p id is invalid for the specified lifetime. * \retval #PSA_ERROR_NOT_SUPPORTED * \p lifetime is not supported. * \retval #PSA_ERROR_NOT_PERMITTED * The specified key exists, but the application does not have the * permission to access it. Note that this specification does not * define any way to create such a key, but it may be possible * through implementation-specific means. */ psa_status_t psa_open_key(psa_key_lifetime_t lifetime, psa_key_id_t id, psa_key_handle_t *handle); /** Create a new persistent key slot. * * Create a new persistent key slot and return a handle to it. The handle * remains valid until the application calls psa_close_key() or terminates. * The application can open the key again with psa_open_key() until it * removes the key by calling psa_destroy_key(). * * \param lifetime The lifetime of the key. This designates a storage * area where the key material is stored. This must not * be #PSA_KEY_LIFETIME_VOLATILE. * \param id The persistent identifier of the key. * \param[out] handle On success, a handle to the newly created key slot. * When key material is later created in this key slot, * it will be saved to the specified persistent location. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the newly allocated key slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_ALREADY_EXISTS * There is already a key with the identifier \p id in the storage * area designated by \p lifetime. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p lifetime is invalid, for example #PSA_KEY_LIFETIME_VOLATILE. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p id is invalid for the specified lifetime. * \retval #PSA_ERROR_NOT_SUPPORTED * \p lifetime is not supported. * \retval #PSA_ERROR_NOT_PERMITTED * \p lifetime is valid, but the application does not have the * permission to create a key there. */ psa_status_t psa_create_key(psa_key_lifetime_t lifetime, psa_key_id_t id, psa_key_handle_t *handle); /** Close a key handle. * * If the handle designates a volatile key, destroy the key material and * free all associated resources, just like psa_destroy_key(). * * If the handle designates a persistent key, free all resources associated * with the key in volatile memory. The key slot in persistent storage is * not affected and can be opened again later with psa_open_key(). * * \param handle The key handle to close. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_close_key(psa_key_handle_t handle); /**@}*/ /** \defgroup import_export Key import and export * @{ */ /** * \brief Import a key in binary format. * * This function supports any output from psa_export_key(). Refer to the * documentation of psa_export_public_key() for the format of public keys * and to the documentation of psa_export_key() for the format for * other key types. * * This specification supports a single format for each key type. * Implementations may support other formats as long as the standard * format is supported. Implementations that support other formats * should ensure that the formats are clearly unambiguous so as to * minimize the risk that an invalid input is accidentally interpreted * according to a different format. * * \param handle Handle to the slot where the key will be stored. * It must have been obtained by calling * psa_allocate_key() or psa_create_key() and must * not contain key material yet. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). On a successful * import, the key slot will contain a key of this type. * \param[in] data Buffer containing the key data. The content of this * buffer is interpreted according to \p type. It must * contain the format described in the documentation * of psa_export_key() or psa_export_public_key() for * the chosen type. * \param data_length Size of the \p data buffer in bytes. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, the key material and the key's metadata * have been saved to persistent storage. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular slot. * \retval #PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid, * or the key data is not correctly formatted. * \retval #PSA_ERROR_ALREADY_EXISTS * There is already a key in the specified slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_STORAGE_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_import_key(psa_key_handle_t handle, psa_key_type_t type, const uint8_t *data, size_t data_length); /** * \brief Destroy a key. * * This function destroys the content of the key slot from both volatile * memory and, if applicable, non-volatile storage. Implementations shall * make a best effort to ensure that any previous content of the slot is * unrecoverable. * * This function also erases any metadata such as policies and frees all * resources associated with the key. * * \param handle Handle to the key slot to erase. * * \retval #PSA_SUCCESS * The slot's content, if any, has been erased. * \retval #PSA_ERROR_NOT_PERMITTED * The slot holds content and cannot be erased because it is * read-only, either due to a policy or due to physical restrictions. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * There was an failure in communication with the cryptoprocessor. * The key material may still be present in the cryptoprocessor. * \retval #PSA_ERROR_STORAGE_FAILURE * The storage is corrupted. Implementations shall make a best effort * to erase key material even in this stage, however applications * should be aware that it may be impossible to guarantee that the * key material is not recoverable in such cases. * \retval #PSA_ERROR_TAMPERING_DETECTED * An unexpected condition which is not a storage corruption or * a communication failure occurred. The cryptoprocessor may have * been compromised. * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_destroy_key(psa_key_handle_t handle); /** * \brief Get basic metadata about a key. * * \param handle Handle to the key slot to query. * \param[out] type On success, the key type (a \c PSA_KEY_TYPE_XXX value). * This may be a null pointer, in which case the key type * is not written. * \param[out] bits On success, the key size in bits. * This may be a null pointer, in which case the key size * is not written. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * The handle is to a key slot which does not contain key material yet. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_get_key_information(psa_key_handle_t handle, psa_key_type_t *type, size_t *bits); /** * \brief Export a key in binary format. * * The output of this function can be passed to psa_import_key() to * create an equivalent object. * * If the implementation of psa_import_key() supports other formats * beyond the format specified here, the output from psa_export_key() * must use the representation specified here, not the original * representation. * * For standard key types, the output format is as follows: * * - For symmetric keys (including MAC keys), the format is the * raw bytes of the key. * - For DES, the key data consists of 8 bytes. The parity bits must be * correct. * - For Triple-DES, the format is the concatenation of the * two or three DES keys. * - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format * is the non-encrypted DER encoding of the representation defined by * PKCS\#1 (RFC 8017) as `RSAPrivateKey`, version 0. * ``` * RSAPrivateKey ::= SEQUENCE { * version INTEGER, -- must be 0 * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p-1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * } * ``` * - For DSA private keys (#PSA_KEY_TYPE_DSA_KEYPAIR), the format * is the non-encrypted DER encoding of the representation used by * OpenSSL and OpenSSH, whose structure is described in ASN.1 as follows: * ``` * DSAPrivateKey ::= SEQUENCE { * version INTEGER, -- must be 0 * prime INTEGER, -- p * subprime INTEGER, -- q * generator INTEGER, -- g * public INTEGER, -- y * private INTEGER, -- x * } * ``` * - For elliptic curve key pairs (key types for which * #PSA_KEY_TYPE_IS_ECC_KEYPAIR is true), the format is * a representation of the private value as a `ceiling(m/8)`-byte string * where `m` is the bit size associated with the curve, i.e. the bit size * of the order of the curve's coordinate field. This byte string is * in little-endian order for Montgomery curves (curve types * `PSA_ECC_CURVE_CURVEXXX`), and in big-endian order for Weierstrass * curves (curve types `PSA_ECC_CURVE_SECTXXX`, `PSA_ECC_CURVE_SECPXXX` * and `PSA_ECC_CURVE_BRAINPOOL_PXXX`). * This is the content of the `privateKey` field of the `ECPrivateKey` * format defined by RFC 5915. * - For public keys (key types for which #PSA_KEY_TYPE_IS_PUBLIC_KEY is * true), the format is the same as for psa_export_public_key(). * * \param handle Handle to the key to export. * \param[out] data Buffer where the key data is to be written. * \param data_size Size of the \p data buffer in bytes. * \param[out] data_length On success, the number of bytes * that make up the key data. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p data buffer is too small. You can determine a * sufficient buffer size by calling * #PSA_KEY_EXPORT_MAX_SIZE(\c type, \c bits) * where \c type is the key type * and \c bits is the key size in bits. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_export_key(psa_key_handle_t handle, uint8_t *data, size_t data_size, size_t *data_length); /** * \brief Export a public key or the public part of a key pair in binary format. * * The output of this function can be passed to psa_import_key() to * create an object that is equivalent to the public key. * * This specification supports a single format for each key type. * Implementations may support other formats as long as the standard * format is supported. Implementations that support other formats * should ensure that the formats are clearly unambiguous so as to * minimize the risk that an invalid input is accidentally interpreted * according to a different format. * * For standard key types, the output format is as follows: * - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), the DER encoding of * the representation defined by RFC 3279 §2.3.1 as `RSAPublicKey`. * ``` * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER } -- e * ``` * - For elliptic curve public keys (key types for which * #PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY is true), the format is the uncompressed * representation defined by SEC1 §2.3.3 as the content of an ECPoint: * Let `m` be the bit size associated with the curve, i.e. the bit size of * `q` for a curve over `F_q`. The representation consists of: * - The byte 0x04; * - `x_P` as a `ceiling(m/8)`-byte string, big-endian; * - `y_P` as a `ceiling(m/8)`-byte string, big-endian. * * For other public key types, the format is the DER representation defined by * RFC 5280 as `SubjectPublicKeyInfo`, with the `subjectPublicKey` format * specified below. * ``` * SubjectPublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * subjectPublicKey BIT STRING } * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, * parameters ANY DEFINED BY algorithm OPTIONAL } * ``` * - For DSA public keys (#PSA_KEY_TYPE_DSA_PUBLIC_KEY), * the `subjectPublicKey` format is defined by RFC 3279 §2.3.2 as * `DSAPublicKey`, * with the OID `id-dsa`, * and with the parameters `DSS-Parms`. * ``` * id-dsa OBJECT IDENTIFIER ::= { * iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 } * * Dss-Parms ::= SEQUENCE { * p INTEGER, * q INTEGER, * g INTEGER } * DSAPublicKey ::= INTEGER -- public key, Y * ``` * * \param handle Handle to the key to export. * \param[out] data Buffer where the key data is to be written. * \param data_size Size of the \p data buffer in bytes. * \param[out] data_length On success, the number of bytes * that make up the key data. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_INVALID_ARGUMENT * The key is neither a public key nor a key pair. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p data buffer is too small. You can determine a * sufficient buffer size by calling * #PSA_KEY_EXPORT_MAX_SIZE(#PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(\c type), \c bits) * where \c type is the key type * and \c bits is the key size in bits. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_export_public_key(psa_key_handle_t handle, uint8_t *data, size_t data_size, size_t *data_length); /** Make a copy of a key. * * Copy key material from one location to another. * * This function is primarily useful to copy a key from one location * to another, since it populates a key using the material from * another key which may have a different lifetime. * * In an implementation where slots have different ownerships, * this function may be used to share a key with a different party, * subject to implementation-defined restrictions on key sharing. * In this case \p constraint would typically prevent the recipient * from exporting the key. * * The resulting key may only be used in a way that conforms to all * three of: the policy of the source key, the policy previously set * on the target, and the \p constraint parameter passed when calling * this function. * - The usage flags on the resulting key are the bitwise-and of the * usage flags on the source policy, the previously-set target policy * and the policy constraint. * - If all three policies allow the same algorithm or wildcard-based * algorithm policy, the resulting key has the same algorithm policy. * - If one of the policies allows an algorithm and all the other policies * either allow the same algorithm or a wildcard-based algorithm policy * that includes this algorithm, the resulting key allows the same * algorithm. * * The effect of this function on implementation-defined metadata is * implementation-defined. * * \param source_handle The key to copy. It must be a handle to an * occupied slot. * \param target_handle A handle to the target slot. It must not contain * key material yet. * \param[in] constraint An optional policy constraint. If this parameter * is non-null then the resulting key will conform * to this policy in addition to the source policy * and the policy already present on the target * slot. If this parameter is null then the * function behaves in the same way as if it was * the target policy, i.e. only the source and * target policies apply. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_ALREADY_EXISTS * \p target already contains key material. * \retval #PSA_ERROR_DOES_NOT_EXIST * \p source does not contain key material. * \retval #PSA_ERROR_INVALID_ARGUMENT * The policy constraints on the source, on the target and * \p constraints are incompatible. * \retval #PSA_ERROR_NOT_PERMITTED * The source key is not exportable and its lifetime does not * allow copying it to the target's lifetime. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_copy_key(psa_key_handle_t source_handle, psa_key_handle_t target_handle, const psa_key_policy_t *constraint); /**@}*/ /** \defgroup hash Message digests * @{ */ /** The type of the state data structure for multipart hash operations. * * Before calling any function on a hash operation object, the application must * initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_hash_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_hash_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_HASH_OPERATION_INIT, * for example: * \code * psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT; * \endcode * - Assign the result of the function psa_hash_operation_init() * to the structure, for example: * \code * psa_hash_operation_t operation; * operation = psa_hash_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_hash_operation_s psa_hash_operation_t; /** \def PSA_HASH_OPERATION_INIT * * This macro returns a suitable initializer for a hash operation object * of type #psa_hash_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_HASH_OPERATION_INIT {0} #endif /** Return an initial value for a hash operation object. */ static psa_hash_operation_t psa_hash_operation_init(void); /** Set up a multipart hash operation. * * The sequence of operations to calculate a hash (message digest) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_hash_operation_t, e.g. PSA_HASH_OPERATION_INIT. * -# Call psa_hash_setup() to specify the algorithm. * -# Call psa_hash_update() zero, one or more times, passing a fragment * of the message each time. The hash that is calculated is the hash * of the concatenation of these messages in order. * -# To calculate the hash, call psa_hash_finish(). * To compare the hash with an expected value, call psa_hash_verify(). * * The application may call psa_hash_abort() at any time after the operation * has been initialized. * * After a successful call to psa_hash_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_hash_update(). * - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_hash_operation_t and not yet in use. * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a hash algorithm. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_setup(psa_hash_operation_t *operation, psa_algorithm_t alg); /** Add a message fragment to a multipart hash operation. * * The application must call psa_hash_setup() before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active hash operation. * \param[in] input Buffer containing the message fragment to hash. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_update(psa_hash_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the hash of a message. * * The application must call psa_hash_setup() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the hash. Call psa_hash_verify() instead. * Beware that comparing integrity or authenticity data such as * hash values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the hashed data which could allow an attacker to guess * a valid hash and thereby bypass security controls. * * \param[in,out] operation Active hash operation. * \param[out] hash Buffer where the hash is to be written. * \param hash_size Size of the \p hash buffer in bytes. * \param[out] hash_length On success, the number of bytes * that make up the hash value. This is always * #PSA_HASH_SIZE(\c alg) where \c alg is the * hash algorithm that is calculated. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p hash buffer is too small. You can determine a * sufficient buffer size by calling #PSA_HASH_SIZE(\c alg) * where \c alg is the hash algorithm that is calculated. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_finish(psa_hash_operation_t *operation, uint8_t *hash, size_t hash_size, size_t *hash_length); /** Finish the calculation of the hash of a message and compare it with * an expected value. * * The application must call psa_hash_setup() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). It then * compares the calculated hash with the expected hash passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual hash and the expected hash is performed * in constant time. * * \param[in,out] operation Active hash operation. * \param[in] hash Buffer containing the expected hash value. * \param hash_length Size of the \p hash buffer in bytes. * * \retval #PSA_SUCCESS * The expected hash is identical to the actual hash of the message. * \retval #PSA_ERROR_INVALID_SIGNATURE * The hash of the message was calculated successfully, but it * differs from the expected hash. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_verify(psa_hash_operation_t *operation, const uint8_t *hash, size_t hash_length); /** Abort a hash operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_hash_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_hash_setup(), whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_hash_operation_t operation = {0}`. * * In particular, calling psa_hash_abort() after the operation has been * terminated by a call to psa_hash_abort(), psa_hash_finish() or * psa_hash_verify() is safe and has no effect. * * \param[in,out] operation Initialized hash operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active hash operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_abort(psa_hash_operation_t *operation); /** Clone a hash operation. * * This function copies the state of an ongoing hash operation to * a new operation object. In other words, this function is equivalent * to calling psa_hash_setup() on \p target_operation with the same * algorithm that \p source_operation was set up for, then * psa_hash_update() on \p target_operation with the same input that * that was passed to \p source_operation. After this function returns, the * two objects are independent, i.e. subsequent calls involving one of * the objects do not affect the other object. * * \param[in] source_operation The active hash operation to clone. * \param[in,out] target_operation The operation object to set up. * It must be initialized but not active. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p source_operation is not an active hash operation. * \retval #PSA_ERROR_BAD_STATE * \p target_operation is active. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_clone(const psa_hash_operation_t *source_operation, psa_hash_operation_t *target_operation); /**@}*/ /** \defgroup MAC Message authentication codes * @{ */ /** The type of the state data structure for multipart MAC operations. * * Before calling any function on a MAC operation object, the application must * initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_mac_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_mac_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_MAC_OPERATION_INIT, * for example: * \code * psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT; * \endcode * - Assign the result of the function psa_mac_operation_init() * to the structure, for example: * \code * psa_mac_operation_t operation; * operation = psa_mac_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_mac_operation_s psa_mac_operation_t; /** \def PSA_MAC_OPERATION_INIT * * This macro returns a suitable initializer for a MAC operation object of type * #psa_mac_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_MAC_OPERATION_INIT {0} #endif /** Return an initial value for a MAC operation object. */ static psa_mac_operation_t psa_mac_operation_init(void); /** Set up a multipart MAC calculation operation. * * This function sets up the calculation of the MAC * (message authentication code) of a byte string. * To verify the MAC of a message against an * expected value, use psa_mac_verify_setup() instead. * * The sequence of operations to calculate a MAC is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT. * -# Call psa_mac_sign_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# At the end of the message, call psa_mac_sign_finish() to finish * calculating the MAC value and retrieve it. * * The application may call psa_mac_abort() at any time after the operation * has been initialized. * * After a successful call to psa_mac_sign_setup(), the application must * eventually terminate the operation through one of the following methods: * - A failed call to psa_mac_update(). * - A call to psa_mac_sign_finish() or psa_mac_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_mac_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_sign_setup(psa_mac_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Set up a multipart MAC verification operation. * * This function sets up the verification of the MAC * (message authentication code) of a byte string against an expected value. * * The sequence of operations to verify a MAC is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT. * -# Call psa_mac_verify_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# At the end of the message, call psa_mac_verify_finish() to finish * calculating the actual MAC of the message and verify it against * the expected value. * * The application may call psa_mac_abort() at any time after the operation * has been initialized. * * After a successful call to psa_mac_verify_setup(), the application must * eventually terminate the operation through one of the following methods: * - A failed call to psa_mac_update(). * - A call to psa_mac_verify_finish() or psa_mac_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_mac_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_verify_setup(psa_mac_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Add a message fragment to a multipart MAC operation. * * The application must call psa_mac_sign_setup() or psa_mac_verify_setup() * before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active MAC operation. * \param[in] input Buffer containing the message fragment to add to * the MAC calculation. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_update(psa_mac_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the MAC of a message. * * The application must call psa_mac_sign_setup() before calling this function. * This function calculates the MAC of the message formed by concatenating * the inputs passed to preceding calls to psa_mac_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the MAC. Call psa_mac_verify_finish() instead. * Beware that comparing integrity or authenticity data such as * MAC values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the MAC value which could allow an attacker to guess * a valid MAC and thereby bypass security controls. * * \param[in,out] operation Active MAC operation. * \param[out] mac Buffer where the MAC value is to be written. * \param mac_size Size of the \p mac buffer in bytes. * \param[out] mac_length On success, the number of bytes * that make up the MAC value. This is always * #PSA_MAC_FINAL_SIZE(\c key_type, \c key_bits, \c alg) * where \c key_type and \c key_bits are the type and * bit-size respectively of the key and \c alg is the * MAC algorithm that is calculated. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p mac buffer is too small. You can determine a * sufficient buffer size by calling PSA_MAC_FINAL_SIZE(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_sign_finish(psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length); /** Finish the calculation of the MAC of a message and compare it with * an expected value. * * The application must call psa_mac_verify_setup() before calling this function. * This function calculates the MAC of the message formed by concatenating * the inputs passed to preceding calls to psa_mac_update(). It then * compares the calculated MAC with the expected MAC passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual MAC and the expected MAC is performed * in constant time. * * \param[in,out] operation Active MAC operation. * \param[in] mac Buffer containing the expected MAC value. * \param mac_length Size of the \p mac buffer in bytes. * * \retval #PSA_SUCCESS * The expected MAC is identical to the actual MAC of the message. * \retval #PSA_ERROR_INVALID_SIGNATURE * The MAC of the message was calculated successfully, but it * differs from the expected MAC. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_verify_finish(psa_mac_operation_t *operation, const uint8_t *mac, size_t mac_length); /** Abort a MAC operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_mac_sign_setup() or psa_mac_verify_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_mac_sign_setup() or psa_mac_verify_setup(), whether * it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_mac_operation_t operation = {0}`. * * In particular, calling psa_mac_abort() after the operation has been * terminated by a call to psa_mac_abort(), psa_mac_sign_finish() or * psa_mac_verify_finish() is safe and has no effect. * * \param[in,out] operation Initialized MAC operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active MAC operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_abort(psa_mac_operation_t *operation); /**@}*/ /** \defgroup cipher Symmetric ciphers * @{ */ /** The type of the state data structure for multipart cipher operations. * * Before calling any function on a cipher operation object, the application * must initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_cipher_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_cipher_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_CIPHER_OPERATION_INIT, * for example: * \code * psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT; * \endcode * - Assign the result of the function psa_cipher_operation_init() * to the structure, for example: * \code * psa_cipher_operation_t operation; * operation = psa_cipher_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_cipher_operation_s psa_cipher_operation_t; /** \def PSA_CIPHER_OPERATION_INIT * * This macro returns a suitable initializer for a cipher operation object of * type #psa_cipher_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_CIPHER_OPERATION_INIT {0} #endif /** Return an initial value for a cipher operation object. */ static psa_cipher_operation_t psa_cipher_operation_init(void); /** Set the key for a multipart symmetric encryption operation. * * The sequence of operations to encrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_cipher_operation_t, e.g. * PSA_CIPHER_OPERATION_INIT. * -# Call psa_cipher_encrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to * generate or set the IV (initialization vector). You should use * psa_cipher_generate_iv() unless the protocol you are implementing * requires a specific IV value. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized. * * After a successful call to psa_cipher_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_cipher_generate_iv(), psa_cipher_set_iv() * or psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_cipher_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Set the key for a multipart symmetric decryption operation. * * The sequence of operations to decrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_cipher_operation_t, e.g. * PSA_CIPHER_OPERATION_INIT. * -# Call psa_cipher_decrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_cipher_update() with the IV (initialization vector) for the * decryption. If the IV is prepended to the ciphertext, you can call * psa_cipher_update() on a buffer containing the IV followed by the * beginning of the message. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized. * * After a successful call to psa_cipher_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_cipher_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Generate an IV for a symmetric encryption operation. * * This function generates a random IV (initialization vector), nonce * or initial counter value for the encryption operation as appropriate * for the chosen algorithm, key type and key size. * * The application must call psa_cipher_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[out] iv Buffer where the generated IV is to be written. * \param iv_size Size of the \p iv buffer in bytes. * \param[out] iv_length On success, the number of bytes of the * generated IV. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or IV already set). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p iv buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t *operation, unsigned char *iv, size_t iv_size, size_t *iv_length); /** Set the IV for a symmetric encryption or decryption operation. * * This function sets the random IV (initialization vector), nonce * or initial counter value for the encryption or decryption operation. * * The application must call psa_cipher_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \note When encrypting, applications should use psa_cipher_generate_iv() * instead of this function, unless implementing a protocol that requires * a non-random IV. * * \param[in,out] operation Active cipher operation. * \param[in] iv Buffer containing the IV to use. * \param iv_length Size of the IV in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or IV already set). * \retval #PSA_ERROR_INVALID_ARGUMENT * The size of \p iv is not acceptable for the chosen algorithm, * or the chosen algorithm does not use an IV. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_set_iv(psa_cipher_operation_t *operation, const unsigned char *iv, size_t iv_length); /** Encrypt or decrypt a message fragment in an active cipher operation. * * Before calling this function, you must: * 1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(). * The choice of setup function determines whether this function * encrypts or decrypts its input. * 2. If the algorithm requires an IV, call psa_cipher_generate_iv() * (recommended when encrypting) or psa_cipher_set_iv(). * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[in] input Buffer containing the message fragment to * encrypt or decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, IV required but * not set, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_update(psa_cipher_operation_t *operation, const uint8_t *input, size_t input_length, unsigned char *output, size_t output_size, size_t *output_length); /** Finish encrypting or decrypting a message in a cipher operation. * * The application must call psa_cipher_encrypt_setup() or * psa_cipher_decrypt_setup() before calling this function. The choice * of setup function determines whether this function encrypts or * decrypts its input. * * This function finishes the encryption or decryption of the message * formed by concatenating the inputs passed to preceding calls to * psa_cipher_update(). * * When this function returns, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, IV required but * not set, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation, uint8_t *output, size_t output_size, size_t *output_length); /** Abort a cipher operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(), * whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_cipher_operation_t operation = {0}`. * * In particular, calling psa_cipher_abort() after the operation has been * terminated by a call to psa_cipher_abort() or psa_cipher_finish() * is safe and has no effect. * * \param[in,out] operation Initialized cipher operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active cipher operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation); /**@}*/ /** \defgroup aead Authenticated encryption with associated data (AEAD) * @{ */ /** Process an authenticated encryption operation. * * \param handle Handle to the key to use for the operation. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * \param[in] nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param[in] additional_data Additional data that will be authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param[in] plaintext Data that will be authenticated and * encrypted. * \param plaintext_length Size of \p plaintext in bytes. * \param[out] ciphertext Output buffer for the authenticated and * encrypted data. The additional data is not * part of this output. For algorithms where the * encrypted data and the authentication tag * are defined as separate outputs, the * authentication tag is appended to the * encrypted data. * \param ciphertext_size Size of the \p ciphertext buffer in bytes. * This must be at least * #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(\p alg, * \p plaintext_length). * \param[out] ciphertext_length On success, the size of the output * in the \b ciphertext buffer. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_encrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *plaintext, size_t plaintext_length, uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length); /** Process an authenticated decryption operation. * * \param handle Handle to the key to use for the operation. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * \param[in] nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param[in] additional_data Additional data that has been authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param[in] ciphertext Data that has been authenticated and * encrypted. For algorithms where the * encrypted data and the authentication tag * are defined as separate inputs, the buffer * must contain the encrypted data followed * by the authentication tag. * \param ciphertext_length Size of \p ciphertext in bytes. * \param[out] plaintext Output buffer for the decrypted data. * \param plaintext_size Size of the \p plaintext buffer in bytes. * This must be at least * #PSA_AEAD_DECRYPT_OUTPUT_SIZE(\p alg, * \p ciphertext_length). * \param[out] plaintext_length On success, the size of the output * in the \b plaintext buffer. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_INVALID_SIGNATURE * The ciphertext is not authentic. * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_decrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *ciphertext, size_t ciphertext_length, uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length); /**@}*/ /** \defgroup asymmetric Asymmetric cryptography * @{ */ /** * \brief Sign a hash or short message with a private key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_setup(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param handle Handle to the key to use for the operation. * It must be an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \p key. * \param[in] hash The hash or message to sign. * \param hash_length Size of the \p hash buffer in bytes. * \param[out] signature Buffer where the signature is to be written. * \param signature_size Size of the \p signature buffer in bytes. * \param[out] signature_length On success, the number of bytes * that make up the returned signature value. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p signature buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p key. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_sign(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, uint8_t *signature, size_t signature_size, size_t *signature_length); /** * \brief Verify the signature a hash or short message using a public key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_setup(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param handle Handle to the key to use for the operation. * It must be a public key or an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \p key. * \param[in] hash The hash or message whose signature is to be * verified. * \param hash_length Size of the \p hash buffer in bytes. * \param[in] signature Buffer containing the signature to verify. * \param signature_length Size of the \p signature buffer in bytes. * * \retval #PSA_SUCCESS * The signature is valid. * \retval #PSA_ERROR_INVALID_SIGNATURE * The calculation was perfomed successfully, but the passed * signature is not a valid signature. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_verify(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *signature, size_t signature_length); /** * \brief Encrypt a short message with a public key. * * \param handle Handle to the key to use for the operation. * It must be a public key or an asymmetric * key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \p key. * \param[in] input The message to encrypt. * \param input_length Size of the \p input buffer in bytes. * \param[in] salt A salt or label, if supported by the * encryption algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \p salt buffer in bytes. * If \p salt is \c NULL, pass 0. * \param[out] output Buffer where the encrypted message is to * be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p key. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_encrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /** * \brief Decrypt a short message with a private key. * * \param handle Handle to the key to use for the operation. * It must be an asymmetric key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \p key. * \param[in] input The message to decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[in] salt A salt or label, if supported by the * encryption algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \p salt buffer in bytes. * If \p salt is \c NULL, pass 0. * \param[out] output Buffer where the decrypted message is to * be written. * \param output_size Size of the \c output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p key. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_INVALID_PADDING * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_decrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /**@}*/ /** \defgroup generators Generators * @{ */ /** The type of the state data structure for generators. * * Before calling any function on a generator, the application must * initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_crypto_generator_t generator; * memset(&generator, 0, sizeof(generator)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_crypto_generator_t generator = {0}; * \endcode * - Initialize the structure to the initializer #PSA_CRYPTO_GENERATOR_INIT, * for example: * \code * psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; * \endcode * - Assign the result of the function psa_crypto_generator_init() * to the structure, for example: * \code * psa_crypto_generator_t generator; * generator = psa_crypto_generator_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_crypto_generator_s psa_crypto_generator_t; /** \def PSA_CRYPTO_GENERATOR_INIT * * This macro returns a suitable initializer for a generator object * of type #psa_crypto_generator_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_CRYPTO_GENERATOR_INIT {0} #endif /** Return an initial value for a generator object. */ static psa_crypto_generator_t psa_crypto_generator_init(void); /** Retrieve the current capacity of a generator. * * The capacity of a generator is the maximum number of bytes that it can * return. Reading *N* bytes from a generator reduces its capacity by *N*. * * \param[in] generator The generator to query. * \param[out] capacity On success, the capacity of the generator. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_get_generator_capacity(const psa_crypto_generator_t *generator, size_t *capacity); /** Read some data from a generator. * * This function reads and returns a sequence of bytes from a generator. * The data that is read is discarded from the generator. The generator's * capacity is decreased by the number of bytes read. * * \param[in,out] generator The generator object to read from. * \param[out] output Buffer where the generator output will be * written. * \param output_length Number of bytes to output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INSUFFICIENT_DATA * There were fewer than \p output_length bytes * in the generator. Note that in this case, no * output is written to the output buffer. * The generator's capacity is set to 0, thus * subsequent calls to this function will not * succeed, even with a smaller output buffer. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_generator_read(psa_crypto_generator_t *generator, uint8_t *output, size_t output_length); /** Create a symmetric key from data read from a generator. * * This function reads a sequence of bytes from a generator and imports * these bytes as a key. * The data that is read is discarded from the generator. The generator's * capacity is decreased by the number of bytes read. * * This function is equivalent to calling #psa_generator_read and * passing the resulting output to #psa_import_key, but * if the implementation provides an isolation boundary then * the key material is not exposed outside the isolation boundary. * * \param handle Handle to the slot where the key will be stored. * It must have been obtained by calling * psa_allocate_key() or psa_create_key() and must * not contain key material yet. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * This must be a symmetric key type. * \param bits Key size in bits. * \param[in,out] generator The generator object to read from. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, the key material and the key's metadata * have been saved to persistent storage. * \retval #PSA_ERROR_INSUFFICIENT_DATA * There were fewer than \p output_length bytes * in the generator. Note that in this case, no * output is written to the output buffer. * The generator's capacity is set to 0, thus * subsequent calls to this function will not * succeed, even with a smaller output buffer. * \retval #PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular slot. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_ALREADY_EXISTS * There is already a key in the specified slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generator_import_key(psa_key_handle_t handle, psa_key_type_t type, size_t bits, psa_crypto_generator_t *generator); /** Abort a generator. * * Once a generator has been aborted, its capacity is zero. * Aborting a generator frees all associated resources except for the * \c generator structure itself. * * This function may be called at any time as long as the generator * object has been initialized to #PSA_CRYPTO_GENERATOR_INIT, to * psa_crypto_generator_init() or a zero value. In particular, it is valid * to call psa_generator_abort() twice, or to call psa_generator_abort() * on a generator that has not been set up. * * Once aborted, the generator object may be called. * * \param[in,out] generator The generator to abort. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_generator_abort(psa_crypto_generator_t *generator); /** Use the maximum possible capacity for a generator. * * Use this value as the capacity argument when setting up a generator * to indicate that the generator should have the maximum possible capacity. * The value of the maximum possible capacity depends on the generator * algorithm. */ #define PSA_GENERATOR_UNBRIDLED_CAPACITY ((size_t)(-1)) /**@}*/ /** \defgroup derivation Key derivation * @{ */ /** Set up a key derivation operation. * * A key derivation algorithm takes three inputs: a secret input \p key and * two non-secret inputs \p label and p salt. * The result of this function is a byte generator which can * be used to produce keys and other cryptographic material. * * The role of \p label and \p salt is as follows: * - For HKDF (#PSA_ALG_HKDF), \p salt is the salt used in the "extract" step * and \p label is the info string used in the "expand" step. * * \param[in,out] generator The generator object to set up. It must have * been initialized as per the documentation for * #psa_crypto_generator_t and not yet in use. * \param handle Handle to the secret key. * \param alg The key derivation algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_KEY_DERIVATION(\p alg) is true). * \param[in] salt Salt to use. * \param salt_length Size of the \p salt buffer in bytes. * \param[in] label Label to use. * \param label_length Size of the \p label buffer in bytes. * \param capacity The maximum number of bytes that the * generator will be able to provide. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg, * or \p capacity is too large for the specified algorithm and key. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a key derivation algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_key_derivation(psa_crypto_generator_t *generator, psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *salt, size_t salt_length, const uint8_t *label, size_t label_length, size_t capacity); /** Set up a key agreement operation. * * A key agreement algorithm takes two inputs: a private key \p private_key * a public key \p peer_key. * The result of this function is a byte generator which can * be used to produce keys and other cryptographic material. * * The resulting generator always has the maximum capacity permitted by * the algorithm. * * \param[in,out] generator The generator object to set up. It must have been * initialized as per the documentation for * #psa_crypto_generator_t and not yet in use. * \param private_key Handle to the private key to use. * \param[in] peer_key Public key of the peer. The peer key must be in the * same format that psa_import_key() accepts for the * public key type corresponding to the type of * \p private_key. That is, this function performs the * equivalent of * `psa_import_key(internal_public_key_handle, * PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(private_key_type), * peer_key, peer_key_length)` where * `private_key_type` is the type of \p private_key. * For example, for EC keys, this means that \p * peer_key is interpreted as a point on the curve * that the private key is associated with. The * standard formats for public keys are documented in * the documentation of psa_export_public_key(). * \param peer_key_length Size of \p peer_key in bytes. * \param alg The key agreement algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_KEY_AGREEMENT(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c private_key is not compatible with \c alg, * or \p peer_key is not valid for \c alg or not compatible with * \c private_key. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a key derivation algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_key_agreement(psa_crypto_generator_t *generator, psa_key_handle_t private_key, const uint8_t *peer_key, size_t peer_key_length, psa_algorithm_t alg); /**@}*/ /** \defgroup random Random generation * @{ */ /** * \brief Generate random bytes. * * \warning This function **can** fail! Callers MUST check the return status * and MUST NOT use the content of the output buffer if the return * status is not #PSA_SUCCESS. * * \note To generate a key, use psa_generate_key() instead. * * \param[out] output Output buffer for the generated data. * \param output_size Number of bytes to generate and output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generate_random(uint8_t *output, size_t output_size); /** Extra parameters for RSA key generation. * * You may pass a pointer to a structure of this type as the \c extra * parameter to psa_generate_key(). */ typedef struct { uint32_t e; /**< Public exponent value. Default: 65537. */ } psa_generate_key_extra_rsa; /** * \brief Generate a key or key pair. * * \param handle Handle to the slot where the key will be stored. * It must have been obtained by calling * psa_allocate_key() or psa_create_key() and must * not contain key material yet. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * \param bits Key size in bits. * \param[in] extra Extra parameters for key generation. The * interpretation of this parameter depends on * \p type. All types support \c NULL to use * default parameters. Implementation that support * the generation of vendor-specific key types * that allow extra parameters shall document * the format of these extra parameters and * the default values. For standard parameters, * the meaning of \p extra is as follows: * - For a symmetric key type (a type such * that #PSA_KEY_TYPE_IS_ASYMMETRIC(\p type) is * false), \p extra must be \c NULL. * - For an elliptic curve key type (a type * such that #PSA_KEY_TYPE_IS_ECC(\p type) is * false), \p extra must be \c NULL. * - For an RSA key (\p type is * #PSA_KEY_TYPE_RSA_KEYPAIR), \p extra is an * optional #psa_generate_key_extra_rsa structure * specifying the public exponent. The * default public exponent used when \p extra * is \c NULL is 65537. * \param extra_size Size of the buffer that \p extra * points to, in bytes. Note that if \p extra is * \c NULL then \p extra_size must be zero. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, the key material and the key's metadata * have been saved to persistent storage. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_ALREADY_EXISTS * There is already a key in the specified slot. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generate_key(psa_key_handle_t handle, psa_key_type_t type, size_t bits, const void *extra, size_t extra_size); /**@}*/ #ifdef __cplusplus } #endif /* The file "crypto_sizes.h" contains definitions for size calculation * macros whose definitions are implementation-specific. */ #include "crypto_sizes.h" /* The file "crypto_struct.h" contains definitions for * implementation-specific structs that are declared above. */ #include "crypto_struct.h" /* The file "crypto_extra.h" contains vendor-specific definitions. This * can include vendor-defined algorithms, extra functions, etc. */ #include "crypto_extra.h" #endif /* PSA_CRYPTO_H */