/* * Public Key abstraction layer: wrapper functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common.h" #include "mbedtls/platform_util.h" #if defined(MBEDTLS_PK_C) #include "pk_wrap.h" #include "mbedtls/error.h" /* Even if RSA not activated, for the sake of RSA-alt */ #include "mbedtls/rsa.h" #if defined(MBEDTLS_ECP_C) #include "mbedtls/ecp.h" #endif #if defined(MBEDTLS_ECDSA_C) #include "mbedtls/ecdsa.h" #endif #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PSA_CRYPTO_C) #include "pkwrite.h" #endif #if defined(MBEDTLS_PSA_CRYPTO_C) #include "mbedtls/psa_util.h" #define PSA_PK_TO_MBEDTLS_ERR(status) psa_pk_status_to_mbedtls(status) #define PSA_PK_RSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \ psa_to_pk_rsa_errors, \ psa_pk_status_to_mbedtls) #define PSA_PK_ECDSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \ psa_to_pk_ecdsa_errors, \ psa_pk_status_to_mbedtls) #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) #include "psa/crypto.h" #include "hash_info.h" #if defined(MBEDTLS_PK_CAN_ECDSA_SOME) #include "mbedtls/asn1write.h" #include "mbedtls/asn1.h" #endif #endif /* MBEDTLS_USE_PSA_CRYPTO */ #include "mbedtls/platform.h" #include #include #include #if !defined(MBEDTLS_DEPRECATED_REMOVED) #if defined(MBEDTLS_PSA_CRYPTO_C) int mbedtls_pk_error_from_psa(psa_status_t status) { switch (status) { case PSA_SUCCESS: return 0; case PSA_ERROR_INVALID_HANDLE: return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT; case PSA_ERROR_NOT_PERMITTED: return MBEDTLS_ERR_ERROR_GENERIC_ERROR; case PSA_ERROR_BUFFER_TOO_SMALL: return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL; case PSA_ERROR_NOT_SUPPORTED: return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; case PSA_ERROR_INVALID_ARGUMENT: return MBEDTLS_ERR_PK_INVALID_ALG; case PSA_ERROR_INSUFFICIENT_MEMORY: return MBEDTLS_ERR_PK_ALLOC_FAILED; case PSA_ERROR_BAD_STATE: return MBEDTLS_ERR_PK_BAD_INPUT_DATA; case PSA_ERROR_COMMUNICATION_FAILURE: case PSA_ERROR_HARDWARE_FAILURE: return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED; case PSA_ERROR_DATA_CORRUPT: case PSA_ERROR_DATA_INVALID: case PSA_ERROR_STORAGE_FAILURE: return MBEDTLS_ERR_PK_FILE_IO_ERROR; case PSA_ERROR_CORRUPTION_DETECTED: return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; default: return MBEDTLS_ERR_ERROR_GENERIC_ERROR; } } #if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) || \ defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR) int mbedtls_pk_error_from_psa_rsa(psa_status_t status) { switch (status) { case PSA_ERROR_NOT_PERMITTED: case PSA_ERROR_INVALID_ARGUMENT: case PSA_ERROR_INVALID_HANDLE: return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; case PSA_ERROR_BUFFER_TOO_SMALL: return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; case PSA_ERROR_INSUFFICIENT_ENTROPY: return MBEDTLS_ERR_RSA_RNG_FAILED; case PSA_ERROR_INVALID_SIGNATURE: return MBEDTLS_ERR_RSA_VERIFY_FAILED; case PSA_ERROR_INVALID_PADDING: return MBEDTLS_ERR_RSA_INVALID_PADDING; case PSA_SUCCESS: return 0; case PSA_ERROR_NOT_SUPPORTED: return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; case PSA_ERROR_INSUFFICIENT_MEMORY: return MBEDTLS_ERR_PK_ALLOC_FAILED; case PSA_ERROR_BAD_STATE: return MBEDTLS_ERR_PK_BAD_INPUT_DATA; case PSA_ERROR_COMMUNICATION_FAILURE: case PSA_ERROR_HARDWARE_FAILURE: return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED; case PSA_ERROR_DATA_CORRUPT: case PSA_ERROR_DATA_INVALID: case PSA_ERROR_STORAGE_FAILURE: return MBEDTLS_ERR_PK_FILE_IO_ERROR; case PSA_ERROR_CORRUPTION_DETECTED: return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; default: return MBEDTLS_ERR_ERROR_GENERIC_ERROR; } } #endif /* PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY || PSA_WANT_KEY_TYPE_RSA_KEY_PAIR */ #endif /* MBEDTLS_PSA_CRYPTO_C */ #if defined(MBEDTLS_USE_PSA_CRYPTO) #if defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY) int mbedtls_pk_error_from_psa_ecdsa(psa_status_t status) { switch (status) { case PSA_ERROR_NOT_PERMITTED: case PSA_ERROR_INVALID_ARGUMENT: return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; case PSA_ERROR_INVALID_HANDLE: return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; case PSA_ERROR_BUFFER_TOO_SMALL: return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; case PSA_ERROR_INSUFFICIENT_ENTROPY: return MBEDTLS_ERR_ECP_RANDOM_FAILED; case PSA_ERROR_INVALID_SIGNATURE: return MBEDTLS_ERR_ECP_VERIFY_FAILED; case PSA_SUCCESS: return 0; case PSA_ERROR_NOT_SUPPORTED: return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; case PSA_ERROR_INSUFFICIENT_MEMORY: return MBEDTLS_ERR_PK_ALLOC_FAILED; case PSA_ERROR_BAD_STATE: return MBEDTLS_ERR_PK_BAD_INPUT_DATA; case PSA_ERROR_COMMUNICATION_FAILURE: case PSA_ERROR_HARDWARE_FAILURE: return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED; case PSA_ERROR_DATA_CORRUPT: case PSA_ERROR_DATA_INVALID: case PSA_ERROR_STORAGE_FAILURE: return MBEDTLS_ERR_PK_FILE_IO_ERROR; case PSA_ERROR_CORRUPTION_DETECTED: return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; default: return MBEDTLS_ERR_ERROR_GENERIC_ERROR; } } #endif /* PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY */ #endif /* MBEDTLS_USE_PSA_CRYPTO */ #endif /* !MBEDTLS_DEPRECATED_REMOVED */ #if defined(MBEDTLS_RSA_C) static int rsa_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_RSA || type == MBEDTLS_PK_RSASSA_PSS; } static size_t rsa_get_bitlen(const void *ctx) { const mbedtls_rsa_context *rsa = (const mbedtls_rsa_context *) ctx; return 8 * mbedtls_rsa_get_len(rsa); } #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_verify_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len) { mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES]; psa_algorithm_t psa_alg_md = PSA_ALG_RSA_PKCS1V15_SIGN(mbedtls_hash_info_psa_from_md(md_alg)); size_t rsa_len = mbedtls_rsa_get_len(rsa); if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } if (sig_len < rsa_len) { return MBEDTLS_ERR_RSA_VERIFY_FAILED; } /* mbedtls_pk_write_pubkey_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &mbedtls_rsa_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_pubkey_der(&key, buf, sizeof(buf)); if (key_len <= 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH); psa_set_key_algorithm(&attributes, psa_alg_md); psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY); status = psa_import_key(&attributes, buf + sizeof(buf) - key_len, key_len, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); goto cleanup; } status = psa_verify_hash(key_id, psa_alg_md, hash, hash_len, sig, sig_len); if (status != PSA_SUCCESS) { ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status); goto cleanup; } ret = 0; cleanup: status = psa_destroy_key(key_id); if (ret == 0 && status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); } return ret; } #else static int rsa_verify_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; size_t rsa_len = mbedtls_rsa_get_len(rsa); if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } if (sig_len < rsa_len) { return MBEDTLS_ERR_RSA_VERIFY_FAILED; } if ((ret = mbedtls_rsa_pkcs1_verify(rsa, md_alg, (unsigned int) hash_len, hash, sig)) != 0) { return ret; } /* The buffer contains a valid signature followed by extra data. * We have a special error code for that so that so that callers can * use mbedtls_pk_verify() to check "Does the buffer start with a * valid signature?" and not just "Does the buffer contain a valid * signature?". */ if (sig_len > rsa_len) { return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH; } return 0; } #endif #if defined(MBEDTLS_PSA_CRYPTO_C) int mbedtls_pk_psa_rsa_sign_ext(psa_algorithm_t alg, mbedtls_rsa_context *rsa_ctx, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES]; mbedtls_pk_info_t pk_info = mbedtls_rsa_info; *sig_len = mbedtls_rsa_get_len(rsa_ctx); if (sig_size < *sig_len) { return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL; } /* mbedtls_pk_write_key_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &pk_info; key.pk_ctx = rsa_ctx; key_len = mbedtls_pk_write_key_der(&key, buf, sizeof(buf)); if (key_len <= 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); psa_set_key_algorithm(&attributes, alg); psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR); status = psa_import_key(&attributes, buf + sizeof(buf) - key_len, key_len, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); goto cleanup; } status = psa_sign_hash(key_id, alg, hash, hash_len, sig, sig_size, sig_len); if (status != PSA_SUCCESS) { ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status); goto cleanup; } ret = 0; cleanup: status = psa_destroy_key(key_id); if (ret == 0 && status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); } return ret; } #endif /* MBEDTLS_PSA_CRYPTO_C */ #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_sign_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { ((void) f_rng); ((void) p_rng); psa_algorithm_t psa_md_alg; psa_md_alg = mbedtls_hash_info_psa_from_md(md_alg); if (psa_md_alg == 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } return mbedtls_pk_psa_rsa_sign_ext(PSA_ALG_RSA_PKCS1V15_SIGN( psa_md_alg), ctx, hash, hash_len, sig, sig_size, sig_len); } #else static int rsa_sign_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } *sig_len = mbedtls_rsa_get_len(rsa); if (sig_size < *sig_len) { return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL; } return mbedtls_rsa_pkcs1_sign(rsa, f_rng, p_rng, md_alg, (unsigned int) hash_len, hash, sig); } #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_decrypt_wrap(void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES]; ((void) f_rng); ((void) p_rng); #if !defined(MBEDTLS_RSA_ALT) if (rsa->padding != MBEDTLS_RSA_PKCS_V15) { return MBEDTLS_ERR_RSA_INVALID_PADDING; } #endif /* !MBEDTLS_RSA_ALT */ if (ilen != mbedtls_rsa_get_len(rsa)) { return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; } /* mbedtls_pk_write_key_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &mbedtls_rsa_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_key_der(&key, buf, sizeof(buf)); if (key_len <= 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR); psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT); psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_CRYPT); status = psa_import_key(&attributes, buf + sizeof(buf) - key_len, key_len, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); goto cleanup; } status = psa_asymmetric_decrypt(key_id, PSA_ALG_RSA_PKCS1V15_CRYPT, input, ilen, NULL, 0, output, osize, olen); if (status != PSA_SUCCESS) { ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status); goto cleanup; } ret = 0; cleanup: mbedtls_platform_zeroize(buf, sizeof(buf)); status = psa_destroy_key(key_id); if (ret == 0 && status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); } return ret; } #else static int rsa_decrypt_wrap(void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; if (ilen != mbedtls_rsa_get_len(rsa)) { return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; } return mbedtls_rsa_pkcs1_decrypt(rsa, f_rng, p_rng, olen, input, output, osize); } #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_encrypt_wrap(void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES]; ((void) f_rng); ((void) p_rng); #if !defined(MBEDTLS_RSA_ALT) if (rsa->padding != MBEDTLS_RSA_PKCS_V15) { return MBEDTLS_ERR_RSA_INVALID_PADDING; } #endif if (mbedtls_rsa_get_len(rsa) > osize) { return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; } /* mbedtls_pk_write_pubkey_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &mbedtls_rsa_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_pubkey_der(&key, buf, sizeof(buf)); if (key_len <= 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT); psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_CRYPT); psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY); status = psa_import_key(&attributes, buf + sizeof(buf) - key_len, key_len, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); goto cleanup; } status = psa_asymmetric_encrypt(key_id, PSA_ALG_RSA_PKCS1V15_CRYPT, input, ilen, NULL, 0, output, osize, olen); if (status != PSA_SUCCESS) { ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status); goto cleanup; } ret = 0; cleanup: status = psa_destroy_key(key_id); if (ret == 0 && status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); } return ret; } #else static int rsa_encrypt_wrap(void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) ctx; *olen = mbedtls_rsa_get_len(rsa); if (*olen > osize) { return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; } return mbedtls_rsa_pkcs1_encrypt(rsa, f_rng, p_rng, ilen, input, output); } #endif static int rsa_check_pair_wrap(const void *pub, const void *prv, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { (void) f_rng; (void) p_rng; return mbedtls_rsa_check_pub_priv((const mbedtls_rsa_context *) pub, (const mbedtls_rsa_context *) prv); } static void *rsa_alloc_wrap(void) { void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_context)); if (ctx != NULL) { mbedtls_rsa_init((mbedtls_rsa_context *) ctx); } return ctx; } static void rsa_free_wrap(void *ctx) { mbedtls_rsa_free((mbedtls_rsa_context *) ctx); mbedtls_free(ctx); } static void rsa_debug(const void *ctx, mbedtls_pk_debug_item *items) { #if defined(MBEDTLS_RSA_ALT) /* Not supported */ (void) ctx; (void) items; #else items->type = MBEDTLS_PK_DEBUG_MPI; items->name = "rsa.N"; items->value = &(((mbedtls_rsa_context *) ctx)->N); items++; items->type = MBEDTLS_PK_DEBUG_MPI; items->name = "rsa.E"; items->value = &(((mbedtls_rsa_context *) ctx)->E); #endif } const mbedtls_pk_info_t mbedtls_rsa_info = { MBEDTLS_PK_RSA, "RSA", rsa_get_bitlen, rsa_can_do, rsa_verify_wrap, rsa_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_decrypt_wrap, rsa_encrypt_wrap, rsa_check_pair_wrap, rsa_alloc_wrap, rsa_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_debug, }; #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_ECP_C) /* * Generic EC key */ static int eckey_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECKEY_DH || type == MBEDTLS_PK_ECDSA; } static size_t eckey_get_bitlen(const void *ctx) { return ((mbedtls_ecp_keypair *) ctx)->grp.pbits; } #if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY) #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * An ASN.1 encoded signature is a sequence of two ASN.1 integers. Parse one of * those integers and convert it to the fixed-length encoding expected by PSA. */ static int extract_ecdsa_sig_int(unsigned char **from, const unsigned char *end, unsigned char *to, size_t to_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t unpadded_len, padding_len; if ((ret = mbedtls_asn1_get_tag(from, end, &unpadded_len, MBEDTLS_ASN1_INTEGER)) != 0) { return ret; } while (unpadded_len > 0 && **from == 0x00) { (*from)++; unpadded_len--; } if (unpadded_len > to_len || unpadded_len == 0) { return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; } padding_len = to_len - unpadded_len; memset(to, 0x00, padding_len); memcpy(to + padding_len, *from, unpadded_len); (*from) += unpadded_len; return 0; } /* * Convert a signature from an ASN.1 sequence of two integers * to a raw {r,s} buffer. Note: the provided sig buffer must be at least * twice as big as int_size. */ static int extract_ecdsa_sig(unsigned char **p, const unsigned char *end, unsigned char *sig, size_t int_size) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t tmp_size; if ((ret = mbedtls_asn1_get_tag(p, end, &tmp_size, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { return ret; } /* Extract r */ if ((ret = extract_ecdsa_sig_int(p, end, sig, int_size)) != 0) { return ret; } /* Extract s */ if ((ret = extract_ecdsa_sig_int(p, end, sig + int_size, int_size)) != 0) { return ret; } return 0; } static int ecdsa_verify_wrap(void *ctx_arg, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len) { mbedtls_ecp_keypair *ctx = ctx_arg; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; size_t key_len; /* This buffer will initially contain the public key and then the signature * but at different points in time. For all curves except secp224k1, which * is not currently supported in PSA, the public key is one byte longer * (header byte + 2 numbers, while the signature is only 2 numbers), * so use that as the buffer size. */ unsigned char buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH]; unsigned char *p; psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA_ANY; size_t curve_bits; psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits); const size_t signature_part_size = (ctx->grp.nbits + 7) / 8; ((void) md_alg); if (curve == 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)); psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH); psa_set_key_algorithm(&attributes, psa_sig_md); ret = mbedtls_ecp_point_write_binary(&ctx->grp, &ctx->Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &key_len, buf, sizeof(buf)); if (ret != 0) { goto cleanup; } status = psa_import_key(&attributes, buf, key_len, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); goto cleanup; } /* We don't need the exported key anymore and can * reuse its buffer for signature extraction. */ if (2 * signature_part_size > sizeof(buf)) { ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA; goto cleanup; } p = (unsigned char *) sig; if ((ret = extract_ecdsa_sig(&p, sig + sig_len, buf, signature_part_size)) != 0) { goto cleanup; } status = psa_verify_hash(key_id, psa_sig_md, hash, hash_len, buf, 2 * signature_part_size); if (status != PSA_SUCCESS) { ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status); goto cleanup; } if (p != sig + sig_len) { ret = MBEDTLS_ERR_PK_SIG_LEN_MISMATCH; goto cleanup; } ret = 0; cleanup: status = psa_destroy_key(key_id); if (ret == 0 && status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); } return ret; } #else /* MBEDTLS_USE_PSA_CRYPTO */ static int ecdsa_verify_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ((void) md_alg); ret = mbedtls_ecdsa_read_signature((mbedtls_ecdsa_context *) ctx, hash, hash_len, sig, sig_len); if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) { return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH; } return ret; } #endif /* MBEDTLS_USE_PSA_CRYPTO */ #endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */ #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * Simultaneously convert and move raw MPI from the beginning of a buffer * to an ASN.1 MPI at the end of the buffer. * See also mbedtls_asn1_write_mpi(). * * p: pointer to the end of the output buffer * start: start of the output buffer, and also of the mpi to write at the end * n_len: length of the mpi to read from start */ static int asn1_write_mpibuf(unsigned char **p, unsigned char *start, size_t n_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t len = 0; if ((size_t) (*p - start) < n_len) { return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL; } len = n_len; *p -= len; memmove(*p, start, len); /* ASN.1 DER encoding requires minimal length, so skip leading 0s. * Neither r nor s should be 0, but as a failsafe measure, still detect * that rather than overflowing the buffer in case of a PSA error. */ while (len > 0 && **p == 0x00) { ++(*p); --len; } /* this is only reached if the signature was invalid */ if (len == 0) { return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED; } /* if the msb is 1, ASN.1 requires that we prepend a 0. * Neither r nor s can be 0, so we can assume len > 0 at all times. */ if (**p & 0x80) { if (*p - start < 1) { return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL; } *--(*p) = 0x00; len += 1; } MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len)); MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, MBEDTLS_ASN1_INTEGER)); return (int) len; } /* Transcode signature from PSA format to ASN.1 sequence. * See ecdsa_signature_to_asn1 in ecdsa.c, but with byte buffers instead of * MPIs, and in-place. * * [in/out] sig: the signature pre- and post-transcoding * [in/out] sig_len: signature length pre- and post-transcoding * [int] buf_len: the available size the in/out buffer */ static int pk_ecdsa_sig_asn1_from_psa(unsigned char *sig, size_t *sig_len, size_t buf_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t len = 0; const size_t rs_len = *sig_len / 2; unsigned char *p = sig + buf_len; MBEDTLS_ASN1_CHK_ADD(len, asn1_write_mpibuf(&p, sig + rs_len, rs_len)); MBEDTLS_ASN1_CHK_ADD(len, asn1_write_mpibuf(&p, sig, rs_len)); MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, sig, len)); MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, sig, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)); memmove(sig, p, len); *sig_len = len; return 0; } static int ecdsa_sign_wrap(void *ctx_arg, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_ecp_keypair *ctx = ctx_arg; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; unsigned char buf[MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH]; #if defined(MBEDTLS_ECDSA_DETERMINISTIC) psa_algorithm_t psa_sig_md = PSA_ALG_DETERMINISTIC_ECDSA(mbedtls_hash_info_psa_from_md(md_alg)); #else psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA(mbedtls_hash_info_psa_from_md(md_alg)); #endif size_t curve_bits; psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits); size_t key_len = PSA_BITS_TO_BYTES(curve_bits); /* PSA has its own RNG */ ((void) f_rng); ((void) p_rng); if (curve == 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } if (key_len > sizeof(buf)) { return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; } ret = mbedtls_mpi_write_binary(&ctx->d, buf, key_len); if (ret != 0) { goto cleanup; } psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(curve)); psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); psa_set_key_algorithm(&attributes, psa_sig_md); status = psa_import_key(&attributes, buf, key_len, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); goto cleanup; } status = psa_sign_hash(key_id, psa_sig_md, hash, hash_len, sig, sig_size, sig_len); if (status != PSA_SUCCESS) { ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status); goto cleanup; } ret = pk_ecdsa_sig_asn1_from_psa(sig, sig_len, sig_size); cleanup: mbedtls_platform_zeroize(buf, sizeof(buf)); status = psa_destroy_key(key_id); if (ret == 0 && status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); } return ret; } #else /* MBEDTLS_USE_PSA_CRYPTO */ static int ecdsa_sign_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { return mbedtls_ecdsa_write_signature((mbedtls_ecdsa_context *) ctx, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng); } #endif /* MBEDTLS_USE_PSA_CRYPTO */ #endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */ #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) /* Forward declarations */ static int ecdsa_verify_rs_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx); static int ecdsa_sign_rs_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx); /* * Restart context for ECDSA operations with ECKEY context * * We need to store an actual ECDSA context, as we need to pass the same to * the underlying ecdsa function, so we can't create it on the fly every time. */ typedef struct { mbedtls_ecdsa_restart_ctx ecdsa_rs; mbedtls_ecdsa_context ecdsa_ctx; } eckey_restart_ctx; static void *eckey_rs_alloc(void) { eckey_restart_ctx *rs_ctx; void *ctx = mbedtls_calloc(1, sizeof(eckey_restart_ctx)); if (ctx != NULL) { rs_ctx = ctx; mbedtls_ecdsa_restart_init(&rs_ctx->ecdsa_rs); mbedtls_ecdsa_init(&rs_ctx->ecdsa_ctx); } return ctx; } static void eckey_rs_free(void *ctx) { eckey_restart_ctx *rs_ctx; if (ctx == NULL) { return; } rs_ctx = ctx; mbedtls_ecdsa_restart_free(&rs_ctx->ecdsa_rs); mbedtls_ecdsa_free(&rs_ctx->ecdsa_ctx); mbedtls_free(ctx); } static int eckey_verify_rs_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; eckey_restart_ctx *rs = rs_ctx; /* Should never happen */ if (rs == NULL) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } /* set up our own sub-context if needed (that is, on first run) */ if (rs->ecdsa_ctx.grp.pbits == 0) { MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, ctx)); } MBEDTLS_MPI_CHK(ecdsa_verify_rs_wrap(&rs->ecdsa_ctx, md_alg, hash, hash_len, sig, sig_len, &rs->ecdsa_rs)); cleanup: return ret; } static int eckey_sign_rs_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; eckey_restart_ctx *rs = rs_ctx; /* Should never happen */ if (rs == NULL) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } /* set up our own sub-context if needed (that is, on first run) */ if (rs->ecdsa_ctx.grp.pbits == 0) { MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, ctx)); } MBEDTLS_MPI_CHK(ecdsa_sign_rs_wrap(&rs->ecdsa_ctx, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng, &rs->ecdsa_rs)); cleanup: return ret; } #endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * Alternative function used to verify that the EC private/public key pair * is valid using PSA functions instead of ECP ones. * The flow is: * - import the private key "prv" to PSA and export its public part * - write the raw content of public key "pub" to a local buffer * - compare the two buffers */ static int eckey_check_pair_psa(const void *pub, const void *prv) { psa_status_t status; psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT; mbedtls_ecp_keypair *prv_ctx = (mbedtls_ecp_keypair *) prv; mbedtls_ecp_keypair *pub_ctx = (mbedtls_ecp_keypair *) pub; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* We are using MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH for the size of this * buffer because it will be used to hold the private key at first and * then its public part (but not at the same time). */ uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH]; size_t prv_key_len; uint8_t pub_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH]; size_t pub_key_len; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; size_t curve_bits; const psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(prv_ctx->grp.id, &curve_bits); const size_t curve_bytes = PSA_BITS_TO_BYTES(curve_bits); psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve)); psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT); ret = mbedtls_mpi_write_binary(&prv_ctx->d, prv_key_buf, curve_bytes); if (ret != 0) { return ret; } status = psa_import_key(&key_attr, prv_key_buf, curve_bytes, &key_id); if (status != PSA_SUCCESS) { ret = PSA_PK_TO_MBEDTLS_ERR(status); return ret; } mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf)); ret = PSA_PK_TO_MBEDTLS_ERR(psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf), &prv_key_len)); status = psa_destroy_key(key_id); if (ret != 0 || status != PSA_SUCCESS) { return (ret != 0) ? ret : PSA_PK_TO_MBEDTLS_ERR(status); } ret = mbedtls_ecp_point_write_binary(&pub_ctx->grp, &pub_ctx->Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &pub_key_len, pub_key_buf, sizeof(pub_key_buf)); if (ret != 0) { return ret; } if (memcmp(prv_key_buf, pub_key_buf, curve_bytes) != 0) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } return 0; } #endif /* MBEDTLS_USE_PSA_CRYPTO */ static int eckey_check_pair(const void *pub, const void *prv, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { #if defined(MBEDTLS_USE_PSA_CRYPTO) (void) f_rng; (void) p_rng; return eckey_check_pair_psa((const mbedtls_ecp_keypair *) pub, (const mbedtls_ecp_keypair *) prv); #else /* MBEDTLS_USE_PSA_CRYPTO */ return mbedtls_ecp_check_pub_priv((const mbedtls_ecp_keypair *) pub, (const mbedtls_ecp_keypair *) prv, f_rng, p_rng); #endif /* MBEDTLS_USE_PSA_CRYPTO */ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; } static void *eckey_alloc_wrap(void) { void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecp_keypair)); if (ctx != NULL) { mbedtls_ecp_keypair_init(ctx); } return ctx; } static void eckey_free_wrap(void *ctx) { mbedtls_ecp_keypair_free((mbedtls_ecp_keypair *) ctx); mbedtls_free(ctx); } static void eckey_debug(const void *ctx, mbedtls_pk_debug_item *items) { items->type = MBEDTLS_PK_DEBUG_ECP; items->name = "eckey.Q"; items->value = &(((mbedtls_ecp_keypair *) ctx)->Q); } const mbedtls_pk_info_t mbedtls_eckey_info = { MBEDTLS_PK_ECKEY, "EC", eckey_get_bitlen, eckey_can_do, #if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY) ecdsa_verify_wrap, /* Compatible key structures */ #else NULL, #endif #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) ecdsa_sign_wrap, /* Compatible key structures */ #else NULL, #endif #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) eckey_verify_rs_wrap, eckey_sign_rs_wrap, #endif NULL, NULL, eckey_check_pair, eckey_alloc_wrap, eckey_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) eckey_rs_alloc, eckey_rs_free, #endif eckey_debug, }; /* * EC key restricted to ECDH */ static int eckeydh_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECKEY_DH; } const mbedtls_pk_info_t mbedtls_eckeydh_info = { MBEDTLS_PK_ECKEY_DH, "EC_DH", eckey_get_bitlen, /* Same underlying key structure */ eckeydh_can_do, NULL, NULL, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif NULL, NULL, eckey_check_pair, eckey_alloc_wrap, /* Same underlying key structure */ eckey_free_wrap, /* Same underlying key structure */ #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif eckey_debug, /* Same underlying key structure */ }; #endif /* MBEDTLS_ECP_C */ #if defined(MBEDTLS_PK_CAN_ECDSA_SOME) static int ecdsa_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_ECDSA; } #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) static int ecdsa_verify_rs_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ((void) md_alg); ret = mbedtls_ecdsa_read_signature_restartable( (mbedtls_ecdsa_context *) ctx, hash, hash_len, sig, sig_len, (mbedtls_ecdsa_restart_ctx *) rs_ctx); if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) { return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH; } return ret; } static int ecdsa_sign_rs_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx) { return mbedtls_ecdsa_write_signature_restartable( (mbedtls_ecdsa_context *) ctx, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng, (mbedtls_ecdsa_restart_ctx *) rs_ctx); } static void *ecdsa_rs_alloc(void) { void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecdsa_restart_ctx)); if (ctx != NULL) { mbedtls_ecdsa_restart_init(ctx); } return ctx; } static void ecdsa_rs_free(void *ctx) { mbedtls_ecdsa_restart_free(ctx); mbedtls_free(ctx); } #endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ const mbedtls_pk_info_t mbedtls_ecdsa_info = { MBEDTLS_PK_ECDSA, "ECDSA", eckey_get_bitlen, /* Compatible key structures */ ecdsa_can_do, #if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY) ecdsa_verify_wrap, /* Compatible key structures */ #else NULL, #endif #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) ecdsa_sign_wrap, /* Compatible key structures */ #else NULL, #endif #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) ecdsa_verify_rs_wrap, ecdsa_sign_rs_wrap, #endif NULL, NULL, eckey_check_pair, /* Compatible key structures */ eckey_alloc_wrap, /* Compatible key structures */ eckey_free_wrap, /* Compatible key structures */ #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) ecdsa_rs_alloc, ecdsa_rs_free, #endif eckey_debug, /* Compatible key structures */ }; #endif /* MBEDTLS_PK_CAN_ECDSA_SOME */ #if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) /* * Support for alternative RSA-private implementations */ static int rsa_alt_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_RSA; } static size_t rsa_alt_get_bitlen(const void *ctx) { const mbedtls_rsa_alt_context *rsa_alt = (const mbedtls_rsa_alt_context *) ctx; return 8 * rsa_alt->key_len_func(rsa_alt->key); } static int rsa_alt_sign_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx; if (UINT_MAX < hash_len) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } *sig_len = rsa_alt->key_len_func(rsa_alt->key); if (*sig_len > MBEDTLS_PK_SIGNATURE_MAX_SIZE) { return MBEDTLS_ERR_PK_BAD_INPUT_DATA; } if (*sig_len > sig_size) { return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL; } return rsa_alt->sign_func(rsa_alt->key, f_rng, p_rng, md_alg, (unsigned int) hash_len, hash, sig); } static int rsa_alt_decrypt_wrap(void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx; ((void) f_rng); ((void) p_rng); if (ilen != rsa_alt->key_len_func(rsa_alt->key)) { return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; } return rsa_alt->decrypt_func(rsa_alt->key, olen, input, output, osize); } #if defined(MBEDTLS_RSA_C) static int rsa_alt_check_pair(const void *pub, const void *prv, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { unsigned char sig[MBEDTLS_MPI_MAX_SIZE]; unsigned char hash[32]; size_t sig_len = 0; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (rsa_alt_get_bitlen(prv) != rsa_get_bitlen(pub)) { return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; } memset(hash, 0x2a, sizeof(hash)); if ((ret = rsa_alt_sign_wrap((void *) prv, MBEDTLS_MD_NONE, hash, sizeof(hash), sig, sizeof(sig), &sig_len, f_rng, p_rng)) != 0) { return ret; } if (rsa_verify_wrap((void *) pub, MBEDTLS_MD_NONE, hash, sizeof(hash), sig, sig_len) != 0) { return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; } return 0; } #endif /* MBEDTLS_RSA_C */ static void *rsa_alt_alloc_wrap(void) { void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_alt_context)); if (ctx != NULL) { memset(ctx, 0, sizeof(mbedtls_rsa_alt_context)); } return ctx; } static void rsa_alt_free_wrap(void *ctx) { mbedtls_platform_zeroize(ctx, sizeof(mbedtls_rsa_alt_context)); mbedtls_free(ctx); } const mbedtls_pk_info_t mbedtls_rsa_alt_info = { MBEDTLS_PK_RSA_ALT, "RSA-alt", rsa_alt_get_bitlen, rsa_alt_can_do, NULL, rsa_alt_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_alt_decrypt_wrap, NULL, #if defined(MBEDTLS_RSA_C) rsa_alt_check_pair, #else NULL, #endif rsa_alt_alloc_wrap, rsa_alt_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif NULL, }; #endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */ #if defined(MBEDTLS_USE_PSA_CRYPTO) static void *pk_opaque_alloc_wrap(void) { void *ctx = mbedtls_calloc(1, sizeof(mbedtls_svc_key_id_t)); /* no _init() function to call, as calloc() already zeroized */ return ctx; } static void pk_opaque_free_wrap(void *ctx) { mbedtls_platform_zeroize(ctx, sizeof(mbedtls_svc_key_id_t)); mbedtls_free(ctx); } static size_t pk_opaque_get_bitlen(const void *ctx) { const mbedtls_svc_key_id_t *key = (const mbedtls_svc_key_id_t *) ctx; size_t bits; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; if (PSA_SUCCESS != psa_get_key_attributes(*key, &attributes)) { return 0; } bits = psa_get_key_bits(&attributes); psa_reset_key_attributes(&attributes); return bits; } static int pk_opaque_ecdsa_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECDSA; } static int pk_opaque_rsa_can_do(mbedtls_pk_type_t type) { return type == MBEDTLS_PK_RSA || type == MBEDTLS_PK_RSASSA_PSS; } static int pk_opaque_sign_wrap(void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { #if !defined(MBEDTLS_PK_CAN_ECDSA_SIGN) && !defined(MBEDTLS_RSA_C) ((void) ctx); ((void) md_alg); ((void) hash); ((void) hash_len); ((void) sig); ((void) sig_size); ((void) sig_len); ((void) f_rng); ((void) p_rng); return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; #else /* !MBEDTLS_PK_CAN_ECDSA_SIGN && !MBEDTLS_RSA_C */ const mbedtls_svc_key_id_t *key = (const mbedtls_svc_key_id_t *) ctx; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; psa_algorithm_t alg; psa_key_type_t type; psa_status_t status; /* PSA has its own RNG */ (void) f_rng; (void) p_rng; status = psa_get_key_attributes(*key, &attributes); if (status != PSA_SUCCESS) { return PSA_PK_TO_MBEDTLS_ERR(status); } type = psa_get_key_type(&attributes); psa_reset_key_attributes(&attributes); #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)) { alg = PSA_ALG_ECDSA(mbedtls_hash_info_psa_from_md(md_alg)); } else #endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */ #if defined(MBEDTLS_RSA_C) if (PSA_KEY_TYPE_IS_RSA(type)) { alg = PSA_ALG_RSA_PKCS1V15_SIGN(mbedtls_hash_info_psa_from_md(md_alg)); } else #endif /* MBEDTLS_RSA_C */ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE; /* make the signature */ status = psa_sign_hash(*key, alg, hash, hash_len, sig, sig_size, sig_len); if (status != PSA_SUCCESS) { #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)) { return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status); } else #endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */ #if defined(MBEDTLS_RSA_C) if (PSA_KEY_TYPE_IS_RSA(type)) { return PSA_PK_RSA_TO_MBEDTLS_ERR(status); } else #endif /* MBEDTLS_RSA_C */ return PSA_PK_TO_MBEDTLS_ERR(status); } #if defined(MBEDTLS_PK_CAN_ECDSA_SIGN) if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)) { /* transcode it to ASN.1 sequence */ return pk_ecdsa_sig_asn1_from_psa(sig, sig_len, sig_size); } #endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */ return 0; #endif /* !MBEDTLS_PK_CAN_ECDSA_SIGN && !MBEDTLS_RSA_C */ } const mbedtls_pk_info_t mbedtls_pk_ecdsa_opaque_info = { MBEDTLS_PK_OPAQUE, "Opaque", pk_opaque_get_bitlen, pk_opaque_ecdsa_can_do, NULL, /* verify - will be done later */ pk_opaque_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, /* restartable verify - not relevant */ NULL, /* restartable sign - not relevant */ #endif NULL, /* decrypt - not relevant */ NULL, /* encrypt - not relevant */ NULL, /* check_pair - could be done later or left NULL */ pk_opaque_alloc_wrap, pk_opaque_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, /* restart alloc - not relevant */ NULL, /* restart free - not relevant */ #endif NULL, /* debug - could be done later, or even left NULL */ }; #if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR) static int pk_opaque_rsa_decrypt(void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { const mbedtls_svc_key_id_t *key = (const mbedtls_svc_key_id_t *) ctx; psa_status_t status; /* PSA has its own RNG */ (void) f_rng; (void) p_rng; status = psa_asymmetric_decrypt(*key, PSA_ALG_RSA_PKCS1V15_CRYPT, input, ilen, NULL, 0, output, osize, olen); if (status != PSA_SUCCESS) { return PSA_PK_RSA_TO_MBEDTLS_ERR(status); } return 0; } #endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR */ const mbedtls_pk_info_t mbedtls_pk_rsa_opaque_info = { MBEDTLS_PK_OPAQUE, "Opaque", pk_opaque_get_bitlen, pk_opaque_rsa_can_do, NULL, /* verify - will be done later */ pk_opaque_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, /* restartable verify - not relevant */ NULL, /* restartable sign - not relevant */ #endif #if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR) pk_opaque_rsa_decrypt, #else NULL, /* decrypt - not available */ #endif /* PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY */ NULL, /* encrypt - will be done later */ NULL, /* check_pair - could be done later or left NULL */ pk_opaque_alloc_wrap, pk_opaque_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, /* restart alloc - not relevant */ NULL, /* restart free - not relevant */ #endif NULL, /* debug - could be done later, or even left NULL */ }; #endif /* MBEDTLS_USE_PSA_CRYPTO */ #endif /* MBEDTLS_PK_C */