/* * The LM-OTS one-time public-key signature scheme * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The following sources were referenced in the design of this implementation * of the LM-OTS algorithm: * * [1] IETF RFC8554 * D. McGrew, M. Curcio, S.Fluhrer * https://datatracker.ietf.org/doc/html/rfc8554 * * [2] NIST Special Publication 800-208 * David A. Cooper et. al. * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf */ #include "common.h" #if defined(MBEDTLS_LMS_C) #include #include "lmots.h" #include "mbedtls/lms.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include "mbedtls/psa_util.h" #include "psa/crypto.h" #define PSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \ psa_to_lms_errors, \ psa_generic_status_to_mbedtls) #define PUBLIC_KEY_TYPE_OFFSET (0) #define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \ MBEDTLS_LMOTS_TYPE_LEN) #define PUBLIC_KEY_Q_LEAF_ID_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \ MBEDTLS_LMOTS_I_KEY_ID_LEN) #define PUBLIC_KEY_KEY_HASH_OFFSET (PUBLIC_KEY_Q_LEAF_ID_OFFSET + \ MBEDTLS_LMOTS_Q_LEAF_ID_LEN) /* We only support parameter sets that use 8-bit digits, as it does not require * translation logic between digits and bytes */ #define W_WINTERNITZ_PARAMETER (8u) #define CHECKSUM_LEN (2) #define I_DIGIT_IDX_LEN (2) #define J_HASH_IDX_LEN (1) #define D_CONST_LEN (2) #define DIGIT_MAX_VALUE ((1u << W_WINTERNITZ_PARAMETER) - 1u) #define D_CONST_LEN (2) static const unsigned char D_PUBLIC_CONSTANT_BYTES[D_CONST_LEN] = { 0x80, 0x80 }; static const unsigned char D_MESSAGE_CONSTANT_BYTES[D_CONST_LEN] = { 0x81, 0x81 }; #if defined(MBEDTLS_TEST_HOOKS) int (*mbedtls_lmots_sign_private_key_invalidated_hook)(unsigned char *) = NULL; #endif /* defined(MBEDTLS_TEST_HOOKS) */ void mbedtls_lms_unsigned_int_to_network_bytes(unsigned int val, size_t len, unsigned char *bytes) { size_t idx; for (idx = 0; idx < len; idx++) { bytes[idx] = (val >> ((len - 1 - idx) * 8)) & 0xFF; } } unsigned int mbedtls_lms_network_bytes_to_unsigned_int(size_t len, const unsigned char *bytes) { size_t idx; unsigned int val = 0; for (idx = 0; idx < len; idx++) { val |= ((unsigned int) bytes[idx]) << (8 * (len - 1 - idx)); } return val; } /* Calculate the checksum digits that are appended to the end of the LMOTS digit * string. See NIST SP800-208 section 3.1 or RFC8554 Algorithm 2 for details of * the checksum algorithm. * * params The LMOTS parameter set, I and q values which * describe the key being used. * * digest The digit string to create the digest from. As * this does not contain a checksum, it is the same * size as a hash output. */ static unsigned short lmots_checksum_calculate(const mbedtls_lmots_parameters_t *params, const unsigned char *digest) { size_t idx; unsigned sum = 0; for (idx = 0; idx < MBEDTLS_LMOTS_N_HASH_LEN(params->type); idx++) { sum += DIGIT_MAX_VALUE - digest[idx]; } return sum; } /* Create the string of digest digits (in the base determined by the Winternitz * parameter with the checksum appended to the end (Q || cksm(Q)). See NIST * SP800-208 section 3.1 or RFC8554 Algorithm 3 step 5 (also used in Algorithm * 4b step 3) for details. * * params The LMOTS parameter set, I and q values which * describe the key being used. * * msg The message that will be hashed to create the * digest. * * msg_size The size of the message. * * C_random_value The random value that will be combined with the * message digest. This is always the same size as a * hash output for whichever hash algorithm is * determined by the parameter set. * * output An output containing the digit string (+ * checksum) of length P digits (in the case of * MBEDTLS_LMOTS_SHA256_N32_W8, this means it is of * size P bytes). */ static int create_digit_array_with_checksum(const mbedtls_lmots_parameters_t *params, const unsigned char *msg, size_t msg_len, const unsigned char *C_random_value, unsigned char *out) { psa_hash_operation_t op = PSA_HASH_OPERATION_INIT; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned short checksum; status = psa_hash_setup(&op, PSA_ALG_SHA_256); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, D_MESSAGE_CONSTANT_BYTES, D_CONST_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, C_random_value, MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(params->type)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, msg, msg_len); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_finish(&op, out, MBEDTLS_LMOTS_N_HASH_LEN(params->type), &output_hash_len); if (status != PSA_SUCCESS) { goto exit; } checksum = lmots_checksum_calculate(params, out); mbedtls_lms_unsigned_int_to_network_bytes(checksum, CHECKSUM_LEN, out + MBEDTLS_LMOTS_N_HASH_LEN(params->type)); exit: psa_hash_abort(&op); return PSA_TO_MBEDTLS_ERR(status); } /* Hash each element of the string of digits (+ checksum), producing a hash * output for each element. This is used in several places (by varying the * hash_idx_min/max_values) in order to calculate a public key from a private * key (RFC8554 Algorithm 1 step 4), in order to sign a message (RFC8554 * Algorithm 3 step 5), and to calculate a public key candidate from a * signature and message (RFC8554 Algorithm 4b step 3). * * params The LMOTS parameter set, I and q values which * describe the key being used. * * x_digit_array The array of digits (of size P, 34 in the case of * MBEDTLS_LMOTS_SHA256_N32_W8). * * hash_idx_min_values An array of the starting values of the j iterator * for each of the members of the digit array. If * this value in NULL, then all iterators will start * at 0. * * hash_idx_max_values An array of the upper bound values of the j * iterator for each of the members of the digit * array. If this value in NULL, then iterator is * bounded to be less than 2^w - 1 (255 in the case * of MBEDTLS_LMOTS_SHA256_N32_W8) * * output An array containing a hash output for each member * of the digit string P. In the case of * MBEDTLS_LMOTS_SHA256_N32_W8, this is of size 32 * * 34. */ static int hash_digit_array(const mbedtls_lmots_parameters_t *params, const unsigned char *x_digit_array, const unsigned char *hash_idx_min_values, const unsigned char *hash_idx_max_values, unsigned char *output) { unsigned int i_digit_idx; unsigned char i_digit_idx_bytes[I_DIGIT_IDX_LEN]; unsigned int j_hash_idx; unsigned char j_hash_idx_bytes[J_HASH_IDX_LEN]; unsigned int j_hash_idx_min; unsigned int j_hash_idx_max; psa_hash_operation_t op = PSA_HASH_OPERATION_INIT; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned char tmp_hash[MBEDTLS_LMOTS_N_HASH_LEN_MAX]; for (i_digit_idx = 0; i_digit_idx < MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(params->type); i_digit_idx++) { memcpy(tmp_hash, &x_digit_array[i_digit_idx * MBEDTLS_LMOTS_N_HASH_LEN(params->type)], MBEDTLS_LMOTS_N_HASH_LEN(params->type)); j_hash_idx_min = hash_idx_min_values != NULL ? hash_idx_min_values[i_digit_idx] : 0; j_hash_idx_max = hash_idx_max_values != NULL ? hash_idx_max_values[i_digit_idx] : DIGIT_MAX_VALUE; for (j_hash_idx = j_hash_idx_min; j_hash_idx < j_hash_idx_max; j_hash_idx++) { status = psa_hash_setup(&op, PSA_ALG_SHA_256); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } mbedtls_lms_unsigned_int_to_network_bytes(i_digit_idx, I_DIGIT_IDX_LEN, i_digit_idx_bytes); status = psa_hash_update(&op, i_digit_idx_bytes, I_DIGIT_IDX_LEN); if (status != PSA_SUCCESS) { goto exit; } mbedtls_lms_unsigned_int_to_network_bytes(j_hash_idx, J_HASH_IDX_LEN, j_hash_idx_bytes); status = psa_hash_update(&op, j_hash_idx_bytes, J_HASH_IDX_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, tmp_hash, MBEDTLS_LMOTS_N_HASH_LEN(params->type)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_finish(&op, tmp_hash, sizeof(tmp_hash), &output_hash_len); if (status != PSA_SUCCESS) { goto exit; } psa_hash_abort(&op); } memcpy(&output[i_digit_idx * MBEDTLS_LMOTS_N_HASH_LEN(params->type)], tmp_hash, MBEDTLS_LMOTS_N_HASH_LEN(params->type)); } exit: psa_hash_abort(&op); mbedtls_platform_zeroize(tmp_hash, sizeof(tmp_hash)); return PSA_TO_MBEDTLS_ERR(status); } /* Combine the hashes of the digit array into a public key. This is used in * in order to calculate a public key from a private key (RFC8554 Algorithm 1 * step 4), and to calculate a public key candidate from a signature and message * (RFC8554 Algorithm 4b step 3). * * params The LMOTS parameter set, I and q values which describe * the key being used. * y_hashed_digits The array of hashes, one hash for each digit of the * symbol array (which is of size P, 34 in the case of * MBEDTLS_LMOTS_SHA256_N32_W8) * * pub_key The output public key (or candidate public key in * case this is being run as part of signature * verification), in the form of a hash output. */ static int public_key_from_hashed_digit_array(const mbedtls_lmots_parameters_t *params, const unsigned char *y_hashed_digits, unsigned char *pub_key) { psa_hash_operation_t op = PSA_HASH_OPERATION_INIT; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; status = psa_hash_setup(&op, PSA_ALG_SHA_256); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, D_PUBLIC_CONSTANT_BYTES, D_CONST_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, y_hashed_digits, MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(params->type) * MBEDTLS_LMOTS_N_HASH_LEN(params->type)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_finish(&op, pub_key, MBEDTLS_LMOTS_N_HASH_LEN(params->type), &output_hash_len); if (status != PSA_SUCCESS) { exit: psa_hash_abort(&op); } return PSA_TO_MBEDTLS_ERR(status); } #if !defined(MBEDTLS_DEPRECATED_REMOVED) int mbedtls_lms_error_from_psa(psa_status_t status) { switch (status) { case PSA_SUCCESS: return 0; case PSA_ERROR_HARDWARE_FAILURE: return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED; case PSA_ERROR_NOT_SUPPORTED: return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED; case PSA_ERROR_BUFFER_TOO_SMALL: return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL; case PSA_ERROR_INVALID_ARGUMENT: return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; default: return MBEDTLS_ERR_ERROR_GENERIC_ERROR; } } #endif /* !MBEDTLS_DEPRECATED_REMOVED */ void mbedtls_lmots_public_init(mbedtls_lmots_public_t *ctx) { memset(ctx, 0, sizeof(*ctx)); } void mbedtls_lmots_public_free(mbedtls_lmots_public_t *ctx) { mbedtls_platform_zeroize(ctx, sizeof(*ctx)); } int mbedtls_lmots_import_public_key(mbedtls_lmots_public_t *ctx, const unsigned char *key, size_t key_len) { if (key_len < MBEDTLS_LMOTS_SIG_TYPE_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ctx->params.type = mbedtls_lms_network_bytes_to_unsigned_int(MBEDTLS_LMOTS_TYPE_LEN, key + MBEDTLS_LMOTS_SIG_TYPE_OFFSET); if (key_len != MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type)) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } memcpy(ctx->params.I_key_identifier, key + PUBLIC_KEY_I_KEY_ID_OFFSET, MBEDTLS_LMOTS_I_KEY_ID_LEN); memcpy(ctx->params.q_leaf_identifier, key + PUBLIC_KEY_Q_LEAF_ID_OFFSET, MBEDTLS_LMOTS_Q_LEAF_ID_LEN); memcpy(ctx->public_key, key + PUBLIC_KEY_KEY_HASH_OFFSET, MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type)); ctx->have_public_key = 1; return 0; } int mbedtls_lmots_export_public_key(const mbedtls_lmots_public_t *ctx, unsigned char *key, size_t key_size, size_t *key_len) { if (key_size < MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type)) { return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL; } if (!ctx->have_public_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } mbedtls_lms_unsigned_int_to_network_bytes(ctx->params.type, MBEDTLS_LMOTS_TYPE_LEN, key + MBEDTLS_LMOTS_SIG_TYPE_OFFSET); memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); memcpy(key + PUBLIC_KEY_Q_LEAF_ID_OFFSET, ctx->params.q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN); memcpy(key + PUBLIC_KEY_KEY_HASH_OFFSET, ctx->public_key, MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type)); if (key_len != NULL) { *key_len = MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type); } return 0; } int mbedtls_lmots_calculate_public_key_candidate(const mbedtls_lmots_parameters_t *params, const unsigned char *msg, size_t msg_size, const unsigned char *sig, size_t sig_size, unsigned char *out, size_t out_size, size_t *out_len) { unsigned char tmp_digit_array[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX]; unsigned char y_hashed_digits[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX]; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (msg == NULL && msg_size != 0) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (sig_size != MBEDTLS_LMOTS_SIG_LEN(params->type) || out_size < MBEDTLS_LMOTS_N_HASH_LEN(params->type)) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ret = create_digit_array_with_checksum(params, msg, msg_size, sig + MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET, tmp_digit_array); if (ret) { return ret; } ret = hash_digit_array(params, sig + MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(params->type), tmp_digit_array, NULL, (unsigned char *) y_hashed_digits); if (ret) { return ret; } ret = public_key_from_hashed_digit_array(params, (unsigned char *) y_hashed_digits, out); if (ret) { return ret; } if (out_len != NULL) { *out_len = MBEDTLS_LMOTS_N_HASH_LEN(params->type); } return 0; } int mbedtls_lmots_verify(const mbedtls_lmots_public_t *ctx, const unsigned char *msg, size_t msg_size, const unsigned char *sig, size_t sig_size) { unsigned char Kc_public_key_candidate[MBEDTLS_LMOTS_N_HASH_LEN_MAX]; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (msg == NULL && msg_size != 0) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (!ctx->have_public_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (ctx->params.type != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (sig_size < MBEDTLS_LMOTS_SIG_TYPE_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } if (mbedtls_lms_network_bytes_to_unsigned_int(MBEDTLS_LMOTS_TYPE_LEN, sig + MBEDTLS_LMOTS_SIG_TYPE_OFFSET) != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } ret = mbedtls_lmots_calculate_public_key_candidate(&ctx->params, msg, msg_size, sig, sig_size, Kc_public_key_candidate, MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type), NULL); if (ret) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } if (memcmp(&Kc_public_key_candidate, ctx->public_key, sizeof(ctx->public_key))) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } return 0; } #if defined(MBEDTLS_LMS_PRIVATE) void mbedtls_lmots_private_init(mbedtls_lmots_private_t *ctx) { memset(ctx, 0, sizeof(*ctx)); } void mbedtls_lmots_private_free(mbedtls_lmots_private_t *ctx) { mbedtls_platform_zeroize(ctx, sizeof(*ctx)); } int mbedtls_lmots_generate_private_key(mbedtls_lmots_private_t *ctx, mbedtls_lmots_algorithm_type_t type, const unsigned char I_key_identifier[MBEDTLS_LMOTS_I_KEY_ID_LEN], uint32_t q_leaf_identifier, const unsigned char *seed, size_t seed_size) { psa_hash_operation_t op = PSA_HASH_OPERATION_INIT; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned int i_digit_idx; unsigned char i_digit_idx_bytes[2]; unsigned char const_bytes[1]; if (ctx->have_private_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (type != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ctx->params.type = type; memcpy(ctx->params.I_key_identifier, I_key_identifier, sizeof(ctx->params.I_key_identifier)); mbedtls_lms_unsigned_int_to_network_bytes(q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN, ctx->params.q_leaf_identifier); mbedtls_lms_unsigned_int_to_network_bytes(0xFF, sizeof(const_bytes), const_bytes); for (i_digit_idx = 0; i_digit_idx < MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(ctx->params.type); i_digit_idx++) { status = psa_hash_setup(&op, PSA_ALG_SHA_256); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, ctx->params.I_key_identifier, sizeof(ctx->params.I_key_identifier)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, ctx->params.q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } mbedtls_lms_unsigned_int_to_network_bytes(i_digit_idx, I_DIGIT_IDX_LEN, i_digit_idx_bytes); status = psa_hash_update(&op, i_digit_idx_bytes, I_DIGIT_IDX_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, const_bytes, sizeof(const_bytes)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, seed, seed_size); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_finish(&op, ctx->private_key[i_digit_idx], MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type), &output_hash_len); if (status != PSA_SUCCESS) { goto exit; } psa_hash_abort(&op); } ctx->have_private_key = 1; exit: psa_hash_abort(&op); return PSA_TO_MBEDTLS_ERR(status); } int mbedtls_lmots_calculate_public_key(mbedtls_lmots_public_t *ctx, const mbedtls_lmots_private_t *priv_ctx) { unsigned char y_hashed_digits[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX]; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* Check that a private key is loaded */ if (!priv_ctx->have_private_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ret = hash_digit_array(&priv_ctx->params, (unsigned char *) priv_ctx->private_key, NULL, NULL, (unsigned char *) y_hashed_digits); if (ret) { goto exit; } ret = public_key_from_hashed_digit_array(&priv_ctx->params, (unsigned char *) y_hashed_digits, ctx->public_key); if (ret) { goto exit; } memcpy(&ctx->params, &priv_ctx->params, sizeof(ctx->params)); ctx->have_public_key = 1; exit: mbedtls_platform_zeroize(y_hashed_digits, sizeof(y_hashed_digits)); return ret; } int mbedtls_lmots_sign(mbedtls_lmots_private_t *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, const unsigned char *msg, size_t msg_size, unsigned char *sig, size_t sig_size, size_t *sig_len) { unsigned char tmp_digit_array[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX]; /* Create a temporary buffer to prepare the signature in. This allows us to * finish creating a signature (ensuring the process doesn't fail), and then * erase the private key **before** writing any data into the sig parameter * buffer. If data were directly written into the sig buffer, it might leak * a partial signature on failure, which effectively compromises the private * key. */ unsigned char tmp_sig[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX]; unsigned char tmp_c_random[MBEDTLS_LMOTS_N_HASH_LEN_MAX]; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (msg == NULL && msg_size != 0) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (sig_size < MBEDTLS_LMOTS_SIG_LEN(ctx->params.type)) { return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL; } /* Check that a private key is loaded */ if (!ctx->have_private_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ret = f_rng(p_rng, tmp_c_random, MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type)); if (ret) { return ret; } ret = create_digit_array_with_checksum(&ctx->params, msg, msg_size, tmp_c_random, tmp_digit_array); if (ret) { goto exit; } ret = hash_digit_array(&ctx->params, (unsigned char *) ctx->private_key, NULL, tmp_digit_array, (unsigned char *) tmp_sig); if (ret) { goto exit; } mbedtls_lms_unsigned_int_to_network_bytes(ctx->params.type, MBEDTLS_LMOTS_TYPE_LEN, sig + MBEDTLS_LMOTS_SIG_TYPE_OFFSET); /* Test hook to check if sig is being written to before we invalidate the * private key. */ #if defined(MBEDTLS_TEST_HOOKS) if (mbedtls_lmots_sign_private_key_invalidated_hook != NULL) { ret = (*mbedtls_lmots_sign_private_key_invalidated_hook)(sig); if (ret != 0) { return ret; } } #endif /* defined(MBEDTLS_TEST_HOOKS) */ /* We've got a valid signature now, so it's time to make sure the private * key can't be reused. */ ctx->have_private_key = 0; mbedtls_platform_zeroize(ctx->private_key, sizeof(ctx->private_key)); memcpy(sig + MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET, tmp_c_random, MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(ctx->params.type)); memcpy(sig + MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(ctx->params.type), tmp_sig, MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(ctx->params.type) * MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type)); if (sig_len != NULL) { *sig_len = MBEDTLS_LMOTS_SIG_LEN(ctx->params.type); } ret = 0; exit: mbedtls_platform_zeroize(tmp_digit_array, sizeof(tmp_digit_array)); mbedtls_platform_zeroize(tmp_sig, sizeof(tmp_sig)); return ret; } #endif /* defined(MBEDTLS_LMS_PRIVATE) */ #endif /* defined(MBEDTLS_LMS_C) */