/* * Diffie-Hellman-Merkle key exchange (server side) * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ #include "mbedtls/build_info.h" #include "mbedtls/platform.h" /* md.h is included this early since MD_CAN_XXX macros are defined there. */ #include "mbedtls/md.h" #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_DHM_C) && \ defined(MBEDTLS_ENTROPY_C) && defined(MBEDTLS_NET_C) && \ defined(MBEDTLS_RSA_C) && defined(MBEDTLS_SHA256_C) && \ defined(MBEDTLS_FS_IO) && defined(MBEDTLS_CTR_DRBG_C) #include "mbedtls/net_sockets.h" #include "mbedtls/aes.h" #include "mbedtls/dhm.h" #include "mbedtls/rsa.h" #include "mbedtls/sha256.h" #include "mbedtls/entropy.h" #include "mbedtls/ctr_drbg.h" #include #include #endif #define SERVER_PORT "11999" #define PLAINTEXT "==Hello there!==" #if !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_DHM_C) || \ !defined(MBEDTLS_ENTROPY_C) || !defined(MBEDTLS_NET_C) || \ !defined(MBEDTLS_RSA_C) || !defined(MBEDTLS_SHA256_C) || \ !defined(MBEDTLS_FS_IO) || !defined(MBEDTLS_CTR_DRBG_C) int main(void) { mbedtls_printf("MBEDTLS_AES_C and/or MBEDTLS_DHM_C and/or MBEDTLS_ENTROPY_C " "and/or MBEDTLS_NET_C and/or MBEDTLS_RSA_C and/or " "MBEDTLS_MD_CAN_SHA256 and/or MBEDTLS_FS_IO and/or " "MBEDTLS_CTR_DRBG_C and/or MBEDTLS_SHA1_C not defined.\n"); mbedtls_exit(0); } #else int main(void) { FILE *f; int ret = 1; int exit_code = MBEDTLS_EXIT_FAILURE; unsigned int mdlen; size_t n, buflen; mbedtls_net_context listen_fd, client_fd; unsigned char buf[2048]; unsigned char hash[MBEDTLS_MD_MAX_SIZE]; unsigned char buf2[2]; const char *pers = "dh_server"; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; mbedtls_rsa_context rsa; mbedtls_dhm_context dhm; mbedtls_aes_context aes; mbedtls_mpi N, P, Q, D, E, dhm_P, dhm_G; mbedtls_net_init(&listen_fd); mbedtls_net_init(&client_fd); mbedtls_dhm_init(&dhm); mbedtls_aes_init(&aes); mbedtls_ctr_drbg_init(&ctr_drbg); mbedtls_mpi_init(&N); mbedtls_mpi_init(&P); mbedtls_mpi_init(&Q); mbedtls_mpi_init(&D); mbedtls_mpi_init(&E); mbedtls_mpi_init(&dhm_P); mbedtls_mpi_init(&dhm_G); /* * 1. Setup the RNG */ mbedtls_printf("\n . Seeding the random number generator"); fflush(stdout); mbedtls_entropy_init(&entropy); if ((ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen(pers))) != 0) { mbedtls_printf(" failed\n ! mbedtls_ctr_drbg_seed returned %d\n", ret); goto exit; } /* * 2a. Read the server's private RSA key */ mbedtls_printf("\n . Reading private key from rsa_priv.txt"); fflush(stdout); if ((f = fopen("rsa_priv.txt", "rb")) == NULL) { mbedtls_printf(" failed\n ! Could not open rsa_priv.txt\n" \ " ! Please run rsa_genkey first\n\n"); goto exit; } mbedtls_rsa_init(&rsa); if ((ret = mbedtls_mpi_read_file(&N, 16, f)) != 0 || (ret = mbedtls_mpi_read_file(&E, 16, f)) != 0 || (ret = mbedtls_mpi_read_file(&D, 16, f)) != 0 || (ret = mbedtls_mpi_read_file(&P, 16, f)) != 0 || (ret = mbedtls_mpi_read_file(&Q, 16, f)) != 0) { mbedtls_printf(" failed\n ! mbedtls_mpi_read_file returned %d\n\n", ret); fclose(f); goto exit; } fclose(f); if ((ret = mbedtls_rsa_import(&rsa, &N, &P, &Q, &D, &E)) != 0) { mbedtls_printf(" failed\n ! mbedtls_rsa_import returned %d\n\n", ret); goto exit; } if ((ret = mbedtls_rsa_complete(&rsa)) != 0) { mbedtls_printf(" failed\n ! mbedtls_rsa_complete returned %d\n\n", ret); goto exit; } /* * 2b. Get the DHM modulus and generator */ mbedtls_printf("\n . Reading DH parameters from dh_prime.txt"); fflush(stdout); if ((f = fopen("dh_prime.txt", "rb")) == NULL) { mbedtls_printf(" failed\n ! Could not open dh_prime.txt\n" \ " ! Please run dh_genprime first\n\n"); goto exit; } if ((ret = mbedtls_mpi_read_file(&dhm_P, 16, f)) != 0 || (ret = mbedtls_mpi_read_file(&dhm_G, 16, f)) != 0 || (ret = mbedtls_dhm_set_group(&dhm, &dhm_P, &dhm_G) != 0)) { mbedtls_printf(" failed\n ! Invalid DH parameter file\n\n"); fclose(f); goto exit; } fclose(f); /* * 3. Wait for a client to connect */ mbedtls_printf("\n . Waiting for a remote connection"); fflush(stdout); if ((ret = mbedtls_net_bind(&listen_fd, NULL, SERVER_PORT, MBEDTLS_NET_PROTO_TCP)) != 0) { mbedtls_printf(" failed\n ! mbedtls_net_bind returned %d\n\n", ret); goto exit; } if ((ret = mbedtls_net_accept(&listen_fd, &client_fd, NULL, 0, NULL)) != 0) { mbedtls_printf(" failed\n ! mbedtls_net_accept returned %d\n\n", ret); goto exit; } /* * 4. Setup the DH parameters (P,G,Ys) */ mbedtls_printf("\n . Sending the server's DH parameters"); fflush(stdout); memset(buf, 0, sizeof(buf)); if ((ret = mbedtls_dhm_make_params(&dhm, (int) mbedtls_dhm_get_len(&dhm), buf, &n, mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) { mbedtls_printf(" failed\n ! mbedtls_dhm_make_params returned %d\n\n", ret); goto exit; } /* * 5. Sign the parameters and send them */ mdlen = (unsigned int) mbedtls_md_get_size(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256)); if (mdlen == 0) { mbedtls_printf(" failed\n ! Invalid digest type\n\n"); goto exit; } if ((ret = mbedtls_sha256(buf, n, hash, 0)) != 0) { mbedtls_printf(" failed\n ! mbedtls_sha256 returned %d\n\n", ret); goto exit; } const size_t rsa_key_len = mbedtls_rsa_get_len(&rsa); buf[n] = (unsigned char) (rsa_key_len >> 8); buf[n + 1] = (unsigned char) (rsa_key_len); if ((ret = mbedtls_rsa_pkcs1_sign(&rsa, mbedtls_ctr_drbg_random, &ctr_drbg, MBEDTLS_MD_SHA256, mdlen, hash, buf + n + 2)) != 0) { mbedtls_printf(" failed\n ! mbedtls_rsa_pkcs1_sign returned %d\n\n", ret); goto exit; } buflen = n + 2 + rsa_key_len; buf2[0] = (unsigned char) (buflen >> 8); buf2[1] = (unsigned char) (buflen); if ((ret = mbedtls_net_send(&client_fd, buf2, 2)) != 2 || (ret = mbedtls_net_send(&client_fd, buf, buflen)) != (int) buflen) { mbedtls_printf(" failed\n ! mbedtls_net_send returned %d\n\n", ret); goto exit; } /* * 6. Get the client's public value: Yc = G ^ Xc mod P */ mbedtls_printf("\n . Receiving the client's public value"); fflush(stdout); memset(buf, 0, sizeof(buf)); n = mbedtls_dhm_get_len(&dhm); if ((ret = mbedtls_net_recv(&client_fd, buf, n)) != (int) n) { mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret); goto exit; } if ((ret = mbedtls_dhm_read_public(&dhm, buf, n)) != 0) { mbedtls_printf(" failed\n ! mbedtls_dhm_read_public returned %d\n\n", ret); goto exit; } /* * 7. Derive the shared secret: K = Ys ^ Xc mod P */ mbedtls_printf("\n . Shared secret: "); fflush(stdout); if ((ret = mbedtls_dhm_calc_secret(&dhm, buf, sizeof(buf), &n, mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) { mbedtls_printf(" failed\n ! mbedtls_dhm_calc_secret returned %d\n\n", ret); goto exit; } for (n = 0; n < 16; n++) { mbedtls_printf("%02x", buf[n]); } /* * 8. Setup the AES-256 encryption key * * This is an overly simplified example; best practice is * to hash the shared secret with a random value to derive * the keying material for the encryption/decryption keys * and MACs. */ mbedtls_printf("...\n . Encrypting and sending the ciphertext"); fflush(stdout); ret = mbedtls_aes_setkey_enc(&aes, buf, 256); if (ret != 0) { goto exit; } memcpy(buf, PLAINTEXT, 16); ret = mbedtls_aes_crypt_ecb(&aes, MBEDTLS_AES_ENCRYPT, buf, buf); if (ret != 0) { goto exit; } if ((ret = mbedtls_net_send(&client_fd, buf, 16)) != 16) { mbedtls_printf(" failed\n ! mbedtls_net_send returned %d\n\n", ret); goto exit; } mbedtls_printf("\n\n"); exit_code = MBEDTLS_EXIT_SUCCESS; exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&P); mbedtls_mpi_free(&Q); mbedtls_mpi_free(&D); mbedtls_mpi_free(&E); mbedtls_mpi_free(&dhm_P); mbedtls_mpi_free(&dhm_G); mbedtls_net_free(&client_fd); mbedtls_net_free(&listen_fd); mbedtls_aes_free(&aes); mbedtls_rsa_free(&rsa); mbedtls_dhm_free(&dhm); mbedtls_ctr_drbg_free(&ctr_drbg); mbedtls_entropy_free(&entropy); mbedtls_exit(exit_code); } #endif /* MBEDTLS_AES_C && MBEDTLS_DHM_C && MBEDTLS_ENTROPY_C && MBEDTLS_NET_C && MBEDTLS_RSA_C && MBEDTLS_MD_CAN_SHA256 && MBEDTLS_FS_IO && MBEDTLS_CTR_DRBG_C */