/** * Cipher API multi-part AEAD demonstration. * * This program AEAD-encrypts a message, using the algorithm and key size * specified on the command line, using the multi-part API. * * It comes with a companion program psa/aead_demo.c, which does the same * operations with the PSA Crypto API. The goal is that comparing the two * programs will help people migrating to the PSA Crypto API. * * When used with multi-part AEAD operations, the `mbedtls_cipher_context` * serves a triple purpose (1) hold the key, (2) store the algorithm when no * operation is active, and (3) save progress information for the current * operation. With PSA those roles are held by disinct objects: (1) a * psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the * algorithm, and (3) a psa_operation_t for multi-part progress. * * On the other hand, with PSA, the algorithms encodes the desired tag length; * with Cipher the desired tag length needs to be tracked separately. * * This program and its companion psa/aead_demo.c illustrate this by doing the * same sequence of multi-part AEAD computation with both APIs; looking at the * two side by side should make the differences and similarities clear. */ /* * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* First include Mbed TLS headers to get the Mbed TLS configuration and * platform definitions that we'll use in this program. Also include * standard C headers for functions we'll use here. */ #include "mbedtls/build_info.h" #include "mbedtls/cipher.h" #include #include #include /* If the build options we need are not enabled, compile a placeholder. */ #if !defined(MBEDTLS_CIPHER_C) || \ !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \ !defined(MBEDTLS_CHACHAPOLY_C) int main(void) { printf("MBEDTLS_MD_C and/or " "MBEDTLS_AES_C and/or MBEDTLS_GCM_C and/or " "MBEDTLS_CHACHAPOLY_C not defined\r\n"); return 0; } #else /* The real program starts here. */ const char usage[] = "Usage: cipher_aead_demo [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]"; /* Dummy data for encryption: IV/nonce, additional data, 2-part message */ const unsigned char iv1[12] = { 0x00 }; const unsigned char add_data1[] = { 0x01, 0x02 }; const unsigned char msg1_part1[] = { 0x03, 0x04 }; const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 }; /* Dummy data (2nd message) */ const unsigned char iv2[12] = { 0x10 }; const unsigned char add_data2[] = { 0x11, 0x12 }; const unsigned char msg2_part1[] = { 0x13, 0x14 }; const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 }; /* Maximum total size of the messages */ #define MSG1_SIZE (sizeof(msg1_part1) + sizeof(msg1_part2)) #define MSG2_SIZE (sizeof(msg2_part1) + sizeof(msg2_part2)) #define MSG_MAX_SIZE (MSG1_SIZE > MSG2_SIZE ? MSG1_SIZE : MSG2_SIZE) /* Dummy key material - never do this in production! * 32-byte is enough to all the key size supported by this program. */ const unsigned char key_bytes[32] = { 0x2a }; /* Print the contents of a buffer in hex */ void print_buf(const char *title, unsigned char *buf, size_t len) { printf("%s:", title); for (size_t i = 0; i < len; i++) { printf(" %02x", buf[i]); } printf("\n"); } /* Run an Mbed TLS function and bail out if it fails. * A string description of the error code can be recovered with: * programs/util/strerror */ #define CHK(expr) \ do \ { \ ret = (expr); \ if (ret != 0) \ { \ printf("Error %d at line %d: %s\n", \ ret, \ __LINE__, \ #expr); \ goto exit; \ } \ } while (0) /* * Prepare encryption material: * - interpret command-line argument * - set up key * - outputs: context and tag length, which together hold all the information */ static int aead_prepare(const char *info, mbedtls_cipher_context_t *ctx, size_t *tag_len) { int ret; /* Convert arg to type + tag_len */ mbedtls_cipher_type_t type; if (strcmp(info, "aes128-gcm") == 0) { type = MBEDTLS_CIPHER_AES_128_GCM; *tag_len = 16; } else if (strcmp(info, "aes256-gcm") == 0) { type = MBEDTLS_CIPHER_AES_256_GCM; *tag_len = 16; } else if (strcmp(info, "aes128-gcm_8") == 0) { type = MBEDTLS_CIPHER_AES_128_GCM; *tag_len = 8; } else if (strcmp(info, "chachapoly") == 0) { type = MBEDTLS_CIPHER_CHACHA20_POLY1305; *tag_len = 16; } else { puts(usage); return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA; } /* Prepare context for the given type */ CHK(mbedtls_cipher_setup(ctx, mbedtls_cipher_info_from_type(type))); /* Import key */ int key_len = mbedtls_cipher_get_key_bitlen(ctx); CHK(mbedtls_cipher_setkey(ctx, key_bytes, key_len, MBEDTLS_ENCRYPT)); exit: return ret; } /* * Print out some information. * * All of this information was present in the command line argument, but his * function demonstrates how each piece can be recovered from (ctx, tag_len). */ static void aead_info(const mbedtls_cipher_context_t *ctx, size_t tag_len) { mbedtls_cipher_type_t type = mbedtls_cipher_get_type(ctx); const mbedtls_cipher_info_t *info = mbedtls_cipher_info_from_type(type); const char *ciph = mbedtls_cipher_info_get_name(info); int key_bits = mbedtls_cipher_get_key_bitlen(ctx); mbedtls_cipher_mode_t mode = mbedtls_cipher_get_cipher_mode(ctx); const char *mode_str = mode == MBEDTLS_MODE_GCM ? "GCM" : mode == MBEDTLS_MODE_CHACHAPOLY ? "ChachaPoly" : "???"; printf("%s, %d, %s, %u\n", ciph, key_bits, mode_str, (unsigned) tag_len); } /* * Encrypt a 2-part message. */ static int aead_encrypt(mbedtls_cipher_context_t *ctx, size_t tag_len, const unsigned char *iv, size_t iv_len, const unsigned char *ad, size_t ad_len, const unsigned char *part1, size_t part1_len, const unsigned char *part2, size_t part2_len) { int ret; size_t olen; #define MAX_TAG_LENGTH 16 unsigned char out[MSG_MAX_SIZE + MAX_TAG_LENGTH]; unsigned char *p = out; CHK(mbedtls_cipher_set_iv(ctx, iv, iv_len)); CHK(mbedtls_cipher_reset(ctx)); CHK(mbedtls_cipher_update_ad(ctx, ad, ad_len)); CHK(mbedtls_cipher_update(ctx, part1, part1_len, p, &olen)); p += olen; CHK(mbedtls_cipher_update(ctx, part2, part2_len, p, &olen)); p += olen; CHK(mbedtls_cipher_finish(ctx, p, &olen)); p += olen; CHK(mbedtls_cipher_write_tag(ctx, p, tag_len)); p += tag_len; olen = p - out; print_buf("out", out, olen); exit: return ret; } /* * AEAD demo: set up key/alg, print out info, encrypt messages. */ static int aead_demo(const char *info) { int ret = 0; mbedtls_cipher_context_t ctx; size_t tag_len; mbedtls_cipher_init(&ctx); CHK(aead_prepare(info, &ctx, &tag_len)); aead_info(&ctx, tag_len); CHK(aead_encrypt(&ctx, tag_len, iv1, sizeof(iv1), add_data1, sizeof(add_data1), msg1_part1, sizeof(msg1_part1), msg1_part2, sizeof(msg1_part2))); CHK(aead_encrypt(&ctx, tag_len, iv2, sizeof(iv2), add_data2, sizeof(add_data2), msg2_part1, sizeof(msg2_part1), msg2_part2, sizeof(msg2_part2))); exit: mbedtls_cipher_free(&ctx); return ret; } /* * Main function */ int main(int argc, char **argv) { /* Check usage */ if (argc != 2) { puts(usage); return 1; } int ret; /* Run the demo */ CHK(aead_demo(argv[1])); exit: return ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE; } #endif