"""Common features for bignum in test generation framework.""" # Copyright The Mbed TLS Contributors # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod import enum from typing import Iterator, List, Tuple, TypeVar, Any from copy import deepcopy from itertools import chain from . import test_case from . import test_data_generation from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT T = TypeVar('T') #pylint: disable=invalid-name def invmod(a: int, n: int) -> int: """Return inverse of a to modulo n. Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent to long_invmod() in CPython. """ b, c = 1, 0 while n: q, r = divmod(a, n) a, b, c, n = n, c, b - q*c, r # at this point a is the gcd of the original inputs if a == 1: return b raise ValueError("Not invertible") def invmod_positive(a: int, n: int) -> int: """Return a non-negative inverse of a to modulo n.""" inv = invmod(a, n) return inv if inv >= 0 else inv + n def hex_to_int(val: str) -> int: """Implement the syntax accepted by mbedtls_test_read_mpi(). This is a superset of what is accepted by mbedtls_test_read_mpi_core(). """ if val in ['', '-']: return 0 return int(val, 16) def quote_str(val: str) -> str: return "\"{}\"".format(val) def bound_mpi(val: int, bits_in_limb: int) -> int: """First number exceeding number of limbs needed for given input value.""" return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb) def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int: """First number exceeding maximum of given number of limbs.""" bits = bits_in_limb * limbs return 1 << bits def limbs_mpi(val: int, bits_in_limb: int) -> int: """Return the number of limbs required to store value.""" bit_length = max(val.bit_length(), 1) return (bit_length + bits_in_limb - 1) // bits_in_limb def combination_pairs(values: List[T]) -> List[Tuple[T, T]]: """Return all pair combinations from input values.""" return [(x, y) for x in values for y in values] def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int: """ Retrun the hex digits need for a number of limbs. """ return 2 * (limbs * bits_in_limb // 8) def hex_digits_max_int(val: str, bits_in_limb: int) -> int: """ Return the first number exceeding maximum the limb space required to store the input hex-string value. This method weights on the input str_len rather than numerical value and works with zero-padded inputs""" n = ((1 << (len(val) * 4)) - 1) l = limbs_mpi(n, bits_in_limb) return bound_mpi_limbs(l, bits_in_limb) def zfill_match(reference: str, target: str) -> str: """ Zero pad target hex-string to match the limb size of the reference input """ lt = len(target) lr = len(reference) target_len = lr if lt < lr else lt return "{:x}".format(int(target, 16)).zfill(target_len) class OperationCommon(test_data_generation.BaseTest): """Common features for bignum binary operations. This adds functionality common in binary operation tests. Attributes: symbol: Symbol to use for the operation in case description. input_values: List of values to use as test case inputs. These are combined to produce pairs of values. input_cases: List of tuples containing pairs of test case inputs. This can be used to implement specific pairs of inputs. unique_combinations_only: Boolean to select if test case combinations must be unique. If True, only A,B or B,A would be included as a test case. If False, both A,B and B,A would be included. input_style: Controls the way how test data is passed to the functions in the generated test cases. "variable" passes them as they are defined in the python source. "arch_split" pads the values with zeroes depending on the architecture/limb size. If this is set, test cases are generated for all architectures. arity: the number of operands for the operation. Currently supported values are 1 and 2. """ symbol = "" input_values = INPUTS_DEFAULT # type: List[str] input_cases = [] # type: List[Any] dependencies = [] # type: List[Any] unique_combinations_only = False input_styles = ["variable", "fixed", "arch_split"] # type: List[str] input_style = "variable" # type: str limb_sizes = [32, 64] # type: List[int] arities = [1, 2] arity = 2 suffix = False # for arity = 1, symbol can be prefix (default) or suffix def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None: self.val_a = val_a self.val_b = val_b # Setting the int versions here as opposed to making them @properties # provides earlier/more robust input validation. self.int_a = hex_to_int(val_a) self.int_b = hex_to_int(val_b) self.dependencies = deepcopy(self.dependencies) if bits_in_limb not in self.limb_sizes: raise ValueError("Invalid number of bits in limb!") if self.input_style == "arch_split": self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb)) self.bits_in_limb = bits_in_limb @property def boundary(self) -> int: if self.arity == 1: return self.int_a elif self.arity == 2: return max(self.int_a, self.int_b) raise ValueError("Unsupported number of operands!") @property def limb_boundary(self) -> int: return bound_mpi(self.boundary, self.bits_in_limb) @property def limbs(self) -> int: return limbs_mpi(self.boundary, self.bits_in_limb) @property def hex_digits(self) -> int: return hex_digits_for_limb(self.limbs, self.bits_in_limb) def format_arg(self, val: str) -> str: if self.input_style not in self.input_styles: raise ValueError("Unknown input style!") if self.input_style == "variable": return val else: return val.zfill(self.hex_digits) def format_result(self, res: int) -> str: res_str = '{:x}'.format(res) return quote_str(self.format_arg(res_str)) @property def arg_a(self) -> str: return self.format_arg(self.val_a) @property def arg_b(self) -> str: if self.arity == 1: raise AttributeError("Operation is unary and doesn't have arg_b!") return self.format_arg(self.val_b) def arguments(self) -> List[str]: args = [quote_str(self.arg_a)] if self.arity == 2: args.append(quote_str(self.arg_b)) return args + self.result() def description(self) -> str: """Generate a description for the test case. If not set, case_description uses the form A `symbol` B, where symbol is used to represent the operation. Descriptions of each value are generated to provide some context to the test case. """ if not self.case_description: if self.arity == 1: format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}" self.case_description = format_string.format( self.symbol, self.int_a ) elif self.arity == 2: self.case_description = "{:x} {} {:x}".format( self.int_a, self.symbol, self.int_b ) return super().description() @property def is_valid(self) -> bool: return True @abstractmethod def result(self) -> List[str]: """Get the result of the operation. This could be calculated during initialization and stored as `_result` and then returned, or calculated when the method is called. """ raise NotImplementedError @classmethod def get_value_pairs(cls) -> Iterator[Tuple[str, str]]: """Generator to yield pairs of inputs. Combinations are first generated from all input values, and then specific cases provided. """ if cls.arity == 1: yield from ((a, "0") for a in cls.input_values) elif cls.arity == 2: if cls.unique_combinations_only: yield from combination_pairs(cls.input_values) else: yield from ( (a, b) for a in cls.input_values for b in cls.input_values ) else: raise ValueError("Unsupported number of operands!") @classmethod def generate_function_tests(cls) -> Iterator[test_case.TestCase]: if cls.input_style not in cls.input_styles: raise ValueError("Unknown input style!") if cls.arity not in cls.arities: raise ValueError("Unsupported number of operands!") if cls.input_style == "arch_split": test_objects = (cls(a, b, bits_in_limb=bil) for a, b in cls.get_value_pairs() for bil in cls.limb_sizes) special_cases = (cls(*args, bits_in_limb=bil) # type: ignore for args in cls.input_cases for bil in cls.limb_sizes) else: test_objects = (cls(a, b) for a, b in cls.get_value_pairs()) special_cases = (cls(*args) for args in cls.input_cases) yield from (valid_test_object.create_test_case() for valid_test_object in filter( lambda test_object: test_object.is_valid, chain(test_objects, special_cases) ) ) class ModulusRepresentation(enum.Enum): """Representation selector of a modulus.""" # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector INVALID = 0 MONTGOMERY = 2 OPT_RED = 3 def symbol(self) -> str: """The C symbol for this representation selector.""" return 'MBEDTLS_MPI_MOD_REP_' + self.name @classmethod def supported_representations(cls) -> List['ModulusRepresentation']: """Return all representations that are supported in positive test cases.""" return [cls.MONTGOMERY, cls.OPT_RED] class ModOperationCommon(OperationCommon): #pylint: disable=abstract-method """Target for bignum mod_raw test case generation.""" moduli = MODULI_DEFAULT # type: List[str] montgomery_form_a = False disallow_zero_a = False def __init__(self, val_n: str, val_a: str, val_b: str = "0", bits_in_limb: int = 64) -> None: super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb) self.val_n = val_n # Setting the int versions here as opposed to making them @properties # provides earlier/more robust input validation. self.int_n = hex_to_int(val_n) def to_montgomery(self, val: int) -> int: return (val * self.r) % self.int_n def from_montgomery(self, val: int) -> int: return (val * self.r_inv) % self.int_n def convert_from_canonical(self, canonical: int, rep: ModulusRepresentation) -> int: """Convert values from canonical representation to the given representation.""" if rep is ModulusRepresentation.MONTGOMERY: return self.to_montgomery(canonical) elif rep is ModulusRepresentation.OPT_RED: return canonical else: raise ValueError('Modulus representation not supported: {}' .format(rep.name)) @property def boundary(self) -> int: return self.int_n @property def arg_a(self) -> str: if self.montgomery_form_a: value_a = self.to_montgomery(self.int_a) else: value_a = self.int_a return self.format_arg('{:x}'.format(value_a)) @property def arg_n(self) -> str: return self.format_arg(self.val_n) def format_arg(self, val: str) -> str: return super().format_arg(val).zfill(self.hex_digits) def arguments(self) -> List[str]: return [quote_str(self.arg_n)] + super().arguments() @property def r(self) -> int: # pylint: disable=invalid-name l = limbs_mpi(self.int_n, self.bits_in_limb) return bound_mpi_limbs(l, self.bits_in_limb) @property def r_inv(self) -> int: return invmod(self.r, self.int_n) @property def r2(self) -> int: # pylint: disable=invalid-name return pow(self.r, 2) @property def is_valid(self) -> bool: if self.int_a >= self.int_n: return False if self.disallow_zero_a and self.int_a == 0: return False if self.arity == 2 and self.int_b >= self.int_n: return False return True def description(self) -> str: """Generate a description for the test case. It uses the form A `symbol` B mod N, where symbol is used to represent the operation. """ if not self.case_description: return super().description() + " mod {:x}".format(self.int_n) return super().description() @classmethod def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]: if cls.arity == 1: yield from ((n, a, "0") for a, n in cls.input_cases) elif cls.arity == 2: yield from ((n, a, b) for a, b, n in cls.input_cases) else: raise ValueError("Unsupported number of operands!") @classmethod def generate_function_tests(cls) -> Iterator[test_case.TestCase]: if cls.input_style not in cls.input_styles: raise ValueError("Unknown input style!") if cls.arity not in cls.arities: raise ValueError("Unsupported number of operands!") if cls.input_style == "arch_split": test_objects = (cls(n, a, b, bits_in_limb=bil) for n in cls.moduli for a, b in cls.get_value_pairs() for bil in cls.limb_sizes) special_cases = (cls(*args, bits_in_limb=bil) for args in cls.input_cases_args() for bil in cls.limb_sizes) else: test_objects = (cls(n, a, b) for n in cls.moduli for a, b in cls.get_value_pairs()) special_cases = (cls(*args) for args in cls.input_cases_args()) yield from (valid_test_object.create_test_case() for valid_test_object in filter( lambda test_object: test_object.is_valid, chain(test_objects, special_cases) ))