/* BEGIN_HEADER */ #include "mbedtls/bignum.h" #include "mbedtls/entropy.h" #include "bignum_core.h" #include "constant_time_internal.h" #include "constant_flow.h" /** Verifies mbedtls_mpi_core_add(). * * \param[in] A Little-endian presentation of the left operand. * \param[in] B Little-endian presentation of the right operand. * \param limbs Number of limbs in each MPI (\p A, \p B, \p S and \p X). * \param[in] S Little-endian presentation of the expected sum. * \param carry Expected carry from the addition. * \param[in,out] X Temporary storage to be used for results. * * \return 1 if mbedtls_mpi_core_add() passes this test, otherwise 0. */ static int mpi_core_verify_add(mbedtls_mpi_uint *A, mbedtls_mpi_uint *B, size_t limbs, mbedtls_mpi_uint *S, int carry, mbedtls_mpi_uint *X) { int ret = 0; size_t bytes = limbs * sizeof(*A); /* The test cases have A <= B to avoid repetition, so we test A + B then, * if A != B, B + A. If A == B, we can test when A and B are aliased */ /* A + B */ /* A + B => correct result and carry */ TEST_EQUAL(carry, mbedtls_mpi_core_add(X, A, B, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); /* A + B; alias output and first operand => correct result and carry */ memcpy(X, A, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_add(X, X, B, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); /* A + B; alias output and second operand => correct result and carry */ memcpy(X, B, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_add(X, A, X, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); if (memcmp(A, B, bytes) == 0) { /* A == B, so test where A and B are aliased */ /* A + A => correct result and carry */ TEST_EQUAL(carry, mbedtls_mpi_core_add(X, A, A, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); /* A + A, output aliased to both operands => correct result and carry */ memcpy(X, A, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_add(X, X, X, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); } else { /* A != B, so test B + A */ /* B + A => correct result and carry */ TEST_EQUAL(carry, mbedtls_mpi_core_add(X, B, A, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); /* B + A; alias output and first operand => correct result and carry */ memcpy(X, B, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_add(X, X, A, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); /* B + A; alias output and second operand => correct result and carry */ memcpy(X, A, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_add(X, B, X, limbs)); ASSERT_COMPARE(X, bytes, S, bytes); } ret = 1; exit: return ret; } /** Verifies mbedtls_mpi_core_add_if(). * * \param[in] A Little-endian presentation of the left operand. * \param[in] B Little-endian presentation of the right operand. * \param limbs Number of limbs in each MPI (\p A, \p B, \p S and \p X). * \param[in] S Little-endian presentation of the expected sum. * \param carry Expected carry from the addition. * \param[in,out] X Temporary storage to be used for results. * * \return 1 if mbedtls_mpi_core_add_if() passes this test, otherwise 0. */ static int mpi_core_verify_add_if(mbedtls_mpi_uint *A, mbedtls_mpi_uint *B, size_t limbs, mbedtls_mpi_uint *S, int carry, mbedtls_mpi_uint *X) { int ret = 0; size_t bytes = limbs * sizeof(*A); /* The test cases have A <= B to avoid repetition, so we test A + B then, * if A != B, B + A. If A == B, we can test when A and B are aliased */ /* A + B */ /* cond = 0 => X unchanged, no carry */ memcpy(X, A, bytes); TEST_EQUAL(0, mbedtls_mpi_core_add_if(X, B, limbs, 0)); ASSERT_COMPARE(X, bytes, A, bytes); /* cond = 1 => correct result and carry */ TEST_EQUAL(carry, mbedtls_mpi_core_add_if(X, B, limbs, 1)); ASSERT_COMPARE(X, bytes, S, bytes); if (memcmp(A, B, bytes) == 0) { /* A == B, so test where A and B are aliased */ /* cond = 0 => X unchanged, no carry */ memcpy(X, B, bytes); TEST_EQUAL(0, mbedtls_mpi_core_add_if(X, X, limbs, 0)); ASSERT_COMPARE(X, bytes, B, bytes); /* cond = 1 => correct result and carry */ TEST_EQUAL(carry, mbedtls_mpi_core_add_if(X, X, limbs, 1)); ASSERT_COMPARE(X, bytes, S, bytes); } else { /* A != B, so test B + A */ /* cond = 0 => d unchanged, no carry */ memcpy(X, B, bytes); TEST_EQUAL(0, mbedtls_mpi_core_add_if(X, A, limbs, 0)); ASSERT_COMPARE(X, bytes, B, bytes); /* cond = 1 => correct result and carry */ TEST_EQUAL(carry, mbedtls_mpi_core_add_if(X, A, limbs, 1)); ASSERT_COMPARE(X, bytes, S, bytes); } ret = 1; exit: return ret; } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_BIGNUM_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void mpi_core_io_null() { mbedtls_mpi_uint X = 0; int ret; ret = mbedtls_mpi_core_read_be(&X, 1, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_write_be(&X, 1, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_read_be(NULL, 0, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_write_be(NULL, 0, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_read_le(&X, 1, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_write_le(&X, 1, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_read_le(NULL, 0, NULL, 0); TEST_EQUAL(ret, 0); ret = mbedtls_mpi_core_write_le(NULL, 0, NULL, 0); TEST_EQUAL(ret, 0); exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_be(data_t *input, int nb_int, int nx_32_int, int iret, int oret) { if (iret != 0) { TEST_ASSERT(oret == 0); } TEST_LE_S(0, nb_int); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U(nb, sizeof(buf)); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S(0, nx_32_int); if (sizeof(mbedtls_mpi_uint) == 8) { nx = nx_32_int / 2 + nx_32_int % 2; } else { nx = nx_32_int; } mbedtls_mpi_uint X[sizeof(buf) / sizeof(mbedtls_mpi_uint)]; TEST_LE_U(nx, sizeof(X) / sizeof(X[0])); int ret = mbedtls_mpi_core_read_be(X, nx, input->x, input->len); TEST_EQUAL(ret, iret); if (iret == 0) { ret = mbedtls_mpi_core_write_be(X, nx, buf, nb); TEST_EQUAL(ret, oret); } if ((iret == 0) && (oret == 0)) { if (nb > input->len) { size_t leading_zeroes = nb - input->len; TEST_ASSERT(memcmp(buf + nb - input->len, input->x, input->len) == 0); for (size_t i = 0; i < leading_zeroes; i++) { TEST_EQUAL(buf[i], 0); } } else { size_t leading_zeroes = input->len - nb; TEST_ASSERT(memcmp(input->x + input->len - nb, buf, nb) == 0); for (size_t i = 0; i < leading_zeroes; i++) { TEST_EQUAL(input->x[i], 0); } } } exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_le(data_t *input, int nb_int, int nx_32_int, int iret, int oret) { if (iret != 0) { TEST_ASSERT(oret == 0); } TEST_LE_S(0, nb_int); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U(nb, sizeof(buf)); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S(0, nx_32_int); if (sizeof(mbedtls_mpi_uint) == 8) { nx = nx_32_int / 2 + nx_32_int % 2; } else { nx = nx_32_int; } mbedtls_mpi_uint X[sizeof(buf) / sizeof(mbedtls_mpi_uint)]; TEST_LE_U(nx, sizeof(X) / sizeof(X[0])); int ret = mbedtls_mpi_core_read_le(X, nx, input->x, input->len); TEST_EQUAL(ret, iret); if (iret == 0) { ret = mbedtls_mpi_core_write_le(X, nx, buf, nb); TEST_EQUAL(ret, oret); } if ((iret == 0) && (oret == 0)) { if (nb > input->len) { TEST_ASSERT(memcmp(buf, input->x, input->len) == 0); for (size_t i = input->len; i < nb; i++) { TEST_EQUAL(buf[i], 0); } } else { TEST_ASSERT(memcmp(input->x, buf, nb) == 0); for (size_t i = nb; i < input->len; i++) { TEST_EQUAL(input->x[i], 0); } } } exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_bitlen(char *input_X, int nr_bits) { mbedtls_mpi_uint *X = NULL; size_t limbs; TEST_EQUAL(mbedtls_test_read_mpi_core(&X, &limbs, input_X), 0); TEST_EQUAL(mbedtls_mpi_core_bitlen(X, limbs), nr_bits); exit: mbedtls_free(X); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_clz(int leading_zeros, int trailing_zeros) { if ((size_t) (leading_zeros + trailing_zeros) >= (sizeof(mbedtls_mpi_uint) * 8)) { // can't fit required number of leading and trailing zeros - skip test goto exit; } // Construct a test input value where the count of leading zeros and // trailing zeros is given in the test case, and we add ones to fill // the gap. mbedtls_mpi_uint x; if ((leading_zeros + trailing_zeros) > 0) { // some zero bits uint32_t s = (sizeof(mbedtls_mpi_uint) * 8 - leading_zeros - trailing_zeros); x = ((((mbedtls_mpi_uint) 1) << s) - 1) << trailing_zeros; } else { // all bits set x = ~((mbedtls_mpi_uint) 0); } size_t n = mbedtls_mpi_core_clz(x); TEST_EQUAL(n, leading_zeros); exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_lt_ct(char *input_X, char *input_Y, int exp_ret) { mbedtls_mpi_uint *X = NULL; size_t X_limbs; mbedtls_mpi_uint *Y = NULL; size_t Y_limbs; int ret; TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&Y, &Y_limbs, input_Y)); /* We need two same-length limb arrays */ TEST_EQUAL(X_limbs, Y_limbs); TEST_CF_SECRET(X, X_limbs * sizeof(mbedtls_mpi_uint)); TEST_CF_SECRET(Y, X_limbs * sizeof(mbedtls_mpi_uint)); ret = mbedtls_mpi_core_lt_ct(X, Y, X_limbs); TEST_EQUAL(!!ret, exp_ret); exit: mbedtls_free(X); mbedtls_free(Y); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_uint_le_mpi(char *input_A) { mbedtls_mpi_uint *A = NULL; size_t A_limbs = 0; TEST_EQUAL(mbedtls_test_read_mpi_core(&A, &A_limbs, input_A), 0); int is_large = 0; /* nonzero limbs beyond the lowest-order one? */ for (size_t i = 1; i < A_limbs; i++) { if (A[i] != 0) { is_large = 1; break; } } TEST_CF_SECRET(A, A_limbs * sizeof(*A)); TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi(0, A, A_limbs), 1); TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi(A[0], A, A_limbs), 1); if (is_large) { TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi(A[0] + 1, A, A_limbs), 1); TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1) >> 1, A, A_limbs), 1); TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1), A, A_limbs), 1); } else { TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi(A[0] + 1, A, A_limbs), A[0] + 1 <= A[0]); TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1) >> 1, A, A_limbs), (mbedtls_mpi_uint) (-1) >> 1 <= A[0]); TEST_EQUAL(!!mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1), A, A_limbs), (mbedtls_mpi_uint) (-1) <= A[0]); } exit: mbedtls_free(A); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_cond_assign(char *input_X, char *input_Y, int input_bytes) { mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *Y = NULL; size_t limbs_X; size_t limbs_Y; TEST_EQUAL(mbedtls_test_read_mpi_core(&X, &limbs_X, input_X), 0); TEST_EQUAL(mbedtls_test_read_mpi_core(&Y, &limbs_Y, input_Y), 0); size_t limbs = limbs_X; size_t copy_limbs = CHARS_TO_LIMBS(input_bytes); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); size_t copy_bytes = copy_limbs * sizeof(mbedtls_mpi_uint); TEST_EQUAL(limbs_X, limbs_Y); TEST_ASSERT(copy_limbs <= limbs); /* condition is false */ TEST_CF_SECRET(X, bytes); TEST_CF_SECRET(Y, bytes); mbedtls_mpi_core_cond_assign(X, Y, copy_limbs, 0); TEST_CF_PUBLIC(X, bytes); TEST_CF_PUBLIC(Y, bytes); TEST_ASSERT(memcmp(X, Y, bytes) != 0); /* condition is true */ TEST_CF_SECRET(X, bytes); TEST_CF_SECRET(Y, bytes); mbedtls_mpi_core_cond_assign(X, Y, copy_limbs, mbedtls_ct_bool(1)); TEST_CF_PUBLIC(X, bytes); TEST_CF_PUBLIC(Y, bytes); /* Check if the given length is copied even it is smaller than the length of the given MPIs. */ if (copy_limbs < limbs) { TEST_CF_PUBLIC(X, bytes); TEST_CF_PUBLIC(Y, bytes); ASSERT_COMPARE(X, copy_bytes, Y, copy_bytes); TEST_ASSERT(memcmp(X, Y, bytes) != 0); } else { ASSERT_COMPARE(X, bytes, Y, bytes); } exit: mbedtls_free(X); mbedtls_free(Y); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_cond_swap(char *input_X, char *input_Y, int input_bytes) { mbedtls_mpi_uint *tmp_X = NULL; mbedtls_mpi_uint *tmp_Y = NULL; mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *Y = NULL; size_t limbs_X; size_t limbs_Y; TEST_EQUAL(mbedtls_test_read_mpi_core(&tmp_X, &limbs_X, input_X), 0); TEST_EQUAL(mbedtls_test_read_mpi_core(&tmp_Y, &limbs_Y, input_Y), 0); size_t limbs = limbs_X; size_t copy_limbs = CHARS_TO_LIMBS(input_bytes); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); size_t copy_bytes = copy_limbs * sizeof(mbedtls_mpi_uint); TEST_EQUAL(limbs_X, limbs_Y); TEST_ASSERT(copy_limbs <= limbs); ASSERT_ALLOC(X, limbs); memcpy(X, tmp_X, bytes); ASSERT_ALLOC(Y, limbs); memcpy(Y, tmp_Y, bytes); /* condition is false */ TEST_CF_SECRET(X, bytes); TEST_CF_SECRET(Y, bytes); mbedtls_mpi_core_cond_swap(X, Y, copy_limbs, 0); TEST_CF_PUBLIC(X, bytes); TEST_CF_PUBLIC(Y, bytes); ASSERT_COMPARE(X, bytes, tmp_X, bytes); ASSERT_COMPARE(Y, bytes, tmp_Y, bytes); /* condition is true */ TEST_CF_SECRET(X, bytes); TEST_CF_SECRET(Y, bytes); mbedtls_mpi_core_cond_swap(X, Y, copy_limbs, mbedtls_ct_bool(1)); TEST_CF_PUBLIC(X, bytes); TEST_CF_PUBLIC(Y, bytes); /* Check if the given length is copied even it is smaller than the length of the given MPIs. */ if (copy_limbs < limbs) { ASSERT_COMPARE(X, copy_bytes, tmp_Y, copy_bytes); ASSERT_COMPARE(Y, copy_bytes, tmp_X, copy_bytes); TEST_ASSERT(memcmp(X, tmp_X, bytes) != 0); TEST_ASSERT(memcmp(X, tmp_Y, bytes) != 0); TEST_ASSERT(memcmp(Y, tmp_X, bytes) != 0); TEST_ASSERT(memcmp(Y, tmp_Y, bytes) != 0); } else { ASSERT_COMPARE(X, bytes, tmp_Y, bytes); ASSERT_COMPARE(Y, bytes, tmp_X, bytes); } exit: mbedtls_free(tmp_X); mbedtls_free(tmp_Y); mbedtls_free(X); mbedtls_free(Y); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_shift_r(char *input, int count, char *result) { mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *Y = NULL; size_t limbs, n; TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &limbs, input)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&Y, &n, result)); TEST_EQUAL(limbs, n); mbedtls_mpi_core_shift_r(X, limbs, count); ASSERT_COMPARE(X, limbs * ciL, Y, limbs * ciL); exit: mbedtls_free(X); mbedtls_free(Y); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_shift_l(char *input, int count, char *result) { mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *Y = NULL; size_t limbs, n; TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &limbs, input)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&Y, &n, result)); TEST_EQUAL(limbs, n); mbedtls_mpi_core_shift_l(X, limbs, count); ASSERT_COMPARE(X, limbs * ciL, Y, limbs * ciL); exit: mbedtls_free(X); mbedtls_free(Y); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_add_and_add_if(char *input_A, char *input_B, char *input_S, int carry) { mbedtls_mpi_uint *A = NULL; /* first value to add */ mbedtls_mpi_uint *B = NULL; /* second value to add */ mbedtls_mpi_uint *S = NULL; /* expected result */ mbedtls_mpi_uint *X = NULL; /* destination - the in/out first operand */ size_t A_limbs, B_limbs, S_limbs; TEST_EQUAL(0, mbedtls_test_read_mpi_core(&A, &A_limbs, input_A)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&B, &B_limbs, input_B)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&S, &S_limbs, input_S)); /* add and add_if expect all operands to be the same length */ TEST_EQUAL(A_limbs, B_limbs); TEST_EQUAL(A_limbs, S_limbs); size_t limbs = A_limbs; ASSERT_ALLOC(X, limbs); TEST_ASSERT(mpi_core_verify_add(A, B, limbs, S, carry, X)); TEST_ASSERT(mpi_core_verify_add_if(A, B, limbs, S, carry, X)); exit: mbedtls_free(A); mbedtls_free(B); mbedtls_free(S); mbedtls_free(X); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_sub(char *input_A, char *input_B, char *input_X, int carry) { mbedtls_mpi A, B, X; mbedtls_mpi_uint *a = NULL; mbedtls_mpi_uint *b = NULL; mbedtls_mpi_uint *x = NULL; /* expected */ mbedtls_mpi_uint *r = NULL; /* result */ mbedtls_mpi_init(&A); mbedtls_mpi_init(&B); mbedtls_mpi_init(&X); TEST_EQUAL(0, mbedtls_test_read_mpi(&A, input_A)); TEST_EQUAL(0, mbedtls_test_read_mpi(&B, input_B)); TEST_EQUAL(0, mbedtls_test_read_mpi(&X, input_X)); /* All of the inputs are +ve (or zero) */ TEST_EQUAL(1, A.s); TEST_EQUAL(1, B.s); TEST_EQUAL(1, X.s); /* Get the number of limbs we will need */ size_t limbs = MAX(A.n, B.n); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* The result shouldn't have more limbs than the longest input */ TEST_LE_U(X.n, limbs); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC(a, bytes); ASSERT_ALLOC(b, bytes); ASSERT_ALLOC(x, bytes); ASSERT_ALLOC(r, bytes); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_sub()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()) */ memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint)); memcpy(b, B.p, B.n * sizeof(mbedtls_mpi_uint)); memcpy(x, X.p, X.n * sizeof(mbedtls_mpi_uint)); /* 1a) r = a - b => we should get the correct carry */ TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, a, b, limbs)); /* 1b) r = a - b => we should get the correct result */ ASSERT_COMPARE(r, bytes, x, bytes); /* 2 and 3 test "r may be aliased to a or b" */ /* 2a) r = a; r -= b => we should get the correct carry (use r to avoid clobbering a) */ memcpy(r, a, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, r, b, limbs)); /* 2b) r -= b => we should get the correct result */ ASSERT_COMPARE(r, bytes, x, bytes); /* 3a) r = b; r = a - r => we should get the correct carry (use r to avoid clobbering b) */ memcpy(r, b, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, a, r, limbs)); /* 3b) r = a - b => we should get the correct result */ ASSERT_COMPARE(r, bytes, x, bytes); /* 4 tests "r may be aliased to [...] both" */ if (A.n == B.n && memcmp(A.p, B.p, bytes) == 0) { memcpy(r, b, bytes); TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, r, r, limbs)); ASSERT_COMPARE(r, bytes, x, bytes); } exit: mbedtls_free(a); mbedtls_free(b); mbedtls_free(x); mbedtls_free(r); mbedtls_mpi_free(&A); mbedtls_mpi_free(&B); mbedtls_mpi_free(&X); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_mla(char *input_A, char *input_B, char *input_S, char *input_X4, char *input_cy4, char *input_X8, char *input_cy8) { /* We are testing A += B * s; A, B are MPIs, s is a scalar. * * However, we encode s as an MPI in the .data file as the test framework * currently only supports `int`-typed scalars, and that doesn't cover the * full range of `mbedtls_mpi_uint`. * * We also have the different results for sizeof(mbedtls_mpi_uint) == 4 or 8. */ mbedtls_mpi A, B, S, X4, X8, cy4, cy8; mbedtls_mpi_uint *a = NULL; mbedtls_mpi_uint *x = NULL; mbedtls_mpi_init(&A); mbedtls_mpi_init(&B); mbedtls_mpi_init(&S); mbedtls_mpi_init(&X4); mbedtls_mpi_init(&X8); mbedtls_mpi_init(&cy4); mbedtls_mpi_init(&cy8); TEST_EQUAL(0, mbedtls_test_read_mpi(&A, input_A)); TEST_EQUAL(0, mbedtls_test_read_mpi(&B, input_B)); TEST_EQUAL(0, mbedtls_test_read_mpi(&S, input_S)); TEST_EQUAL(0, mbedtls_test_read_mpi(&X4, input_X4)); TEST_EQUAL(0, mbedtls_test_read_mpi(&cy4, input_cy4)); TEST_EQUAL(0, mbedtls_test_read_mpi(&X8, input_X8)); TEST_EQUAL(0, mbedtls_test_read_mpi(&cy8, input_cy8)); /* The MPI encoding of scalar s must be only 1 limb */ TEST_EQUAL(1, S.n); /* We only need to work with X4 or X8, and cy4 or cy8, depending on sizeof(mbedtls_mpi_uint) */ mbedtls_mpi *X = (sizeof(mbedtls_mpi_uint) == 4) ? &X4 : &X8; mbedtls_mpi *cy = (sizeof(mbedtls_mpi_uint) == 4) ? &cy4 : &cy8; /* The carry should only have one limb */ TEST_EQUAL(1, cy->n); /* All of the inputs are +ve (or zero) */ TEST_EQUAL(1, A.s); TEST_EQUAL(1, B.s); TEST_EQUAL(1, S.s); TEST_EQUAL(1, X->s); TEST_EQUAL(1, cy->s); /* Get the (max) number of limbs we will need */ size_t limbs = MAX(A.n, B.n); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* The result shouldn't have more limbs than the longest input */ TEST_LE_U(X->n, limbs); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC(a, bytes); ASSERT_ALLOC(x, bytes); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_mla()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()). */ memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint)); memcpy(x, X->p, X->n * sizeof(mbedtls_mpi_uint)); /* 1a) A += B * s => we should get the correct carry */ TEST_EQUAL(mbedtls_mpi_core_mla(a, limbs, B.p, B.n, *S.p), *cy->p); /* 1b) A += B * s => we should get the correct result */ ASSERT_COMPARE(a, bytes, x, bytes); if (A.n == B.n && memcmp(A.p, B.p, bytes) == 0) { /* Check when A and B are aliased */ memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint)); TEST_EQUAL(mbedtls_mpi_core_mla(a, limbs, a, limbs, *S.p), *cy->p); ASSERT_COMPARE(a, bytes, x, bytes); } exit: mbedtls_free(a); mbedtls_free(x); mbedtls_mpi_free(&A); mbedtls_mpi_free(&B); mbedtls_mpi_free(&S); mbedtls_mpi_free(&X4); mbedtls_mpi_free(&X8); mbedtls_mpi_free(&cy4); mbedtls_mpi_free(&cy8); } /* END_CASE */ /* BEGIN_CASE */ void mpi_montg_init(char *input_N, char *input_mm) { mbedtls_mpi N, mm; mbedtls_mpi_init(&N); mbedtls_mpi_init(&mm); TEST_EQUAL(0, mbedtls_test_read_mpi(&N, input_N)); TEST_EQUAL(0, mbedtls_test_read_mpi(&mm, input_mm)); /* The MPI encoding of mm should be 1 limb (sizeof(mbedtls_mpi_uint) == 8) or * 2 limbs (sizeof(mbedtls_mpi_uint) == 4). * * The data file contains the expected result for sizeof(mbedtls_mpi_uint) == 8; * for sizeof(mbedtls_mpi_uint) == 4 it's just the LSW of this. */ TEST_ASSERT(mm.n == 1 || mm.n == 2); /* All of the inputs are +ve (or zero) */ TEST_EQUAL(1, N.s); TEST_EQUAL(1, mm.s); /* mbedtls_mpi_core_montmul_init() only returns a result, no error possible */ mbedtls_mpi_uint result = mbedtls_mpi_core_montmul_init(N.p); /* Check we got the correct result */ TEST_EQUAL(result, mm.p[0]); exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&mm); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_montmul(int limbs_AN4, int limbs_B4, int limbs_AN8, int limbs_B8, char *input_A, char *input_B, char *input_N, char *input_X4, char *input_X8) { mbedtls_mpi A, B, N, X4, X8, T, R; mbedtls_mpi_init(&A); mbedtls_mpi_init(&B); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X4); /* expected result, sizeof(mbedtls_mpi_uint) == 4 */ mbedtls_mpi_init(&X8); /* expected result, sizeof(mbedtls_mpi_uint) == 8 */ mbedtls_mpi_init(&T); mbedtls_mpi_init(&R); /* for the result */ TEST_EQUAL(0, mbedtls_test_read_mpi(&A, input_A)); TEST_EQUAL(0, mbedtls_test_read_mpi(&B, input_B)); TEST_EQUAL(0, mbedtls_test_read_mpi(&N, input_N)); TEST_EQUAL(0, mbedtls_test_read_mpi(&X4, input_X4)); TEST_EQUAL(0, mbedtls_test_read_mpi(&X8, input_X8)); mbedtls_mpi *X = (sizeof(mbedtls_mpi_uint) == 4) ? &X4 : &X8; int limbs_AN = (sizeof(mbedtls_mpi_uint) == 4) ? limbs_AN4 : limbs_AN8; int limbs_B = (sizeof(mbedtls_mpi_uint) == 4) ? limbs_B4 : limbs_B8; TEST_LE_U(A.n, (size_t) limbs_AN); TEST_LE_U(X->n, (size_t) limbs_AN); TEST_LE_U(B.n, (size_t) limbs_B); TEST_LE_U(limbs_B, limbs_AN); /* All of the inputs are +ve (or zero) */ TEST_EQUAL(1, A.s); TEST_EQUAL(1, B.s); TEST_EQUAL(1, N.s); TEST_EQUAL(1, X->s); TEST_EQUAL(0, mbedtls_mpi_grow(&A, limbs_AN)); TEST_EQUAL(0, mbedtls_mpi_grow(&N, limbs_AN)); TEST_EQUAL(0, mbedtls_mpi_grow(X, limbs_AN)); TEST_EQUAL(0, mbedtls_mpi_grow(&B, limbs_B)); size_t working_limbs = mbedtls_mpi_core_montmul_working_limbs(limbs_AN); TEST_EQUAL(working_limbs, limbs_AN * 2 + 1); TEST_EQUAL(0, mbedtls_mpi_grow(&T, working_limbs)); /* Calculate the Montgomery constant (this is unit tested separately) */ mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N.p); TEST_EQUAL(0, mbedtls_mpi_grow(&R, limbs_AN)); /* ensure it's got the right number of limbs */ mbedtls_mpi_core_montmul(R.p, A.p, B.p, B.n, N.p, N.n, mm, T.p); size_t bytes = N.n * sizeof(mbedtls_mpi_uint); ASSERT_COMPARE(R.p, bytes, X->p, bytes); /* The output (R, above) may be aliased to A - use R to save the value of A */ memcpy(R.p, A.p, bytes); mbedtls_mpi_core_montmul(A.p, A.p, B.p, B.n, N.p, N.n, mm, T.p); ASSERT_COMPARE(A.p, bytes, X->p, bytes); memcpy(A.p, R.p, bytes); /* restore A */ /* The output may be aliased to N - use R to save the value of N */ memcpy(R.p, N.p, bytes); mbedtls_mpi_core_montmul(N.p, A.p, B.p, B.n, N.p, N.n, mm, T.p); ASSERT_COMPARE(N.p, bytes, X->p, bytes); memcpy(N.p, R.p, bytes); if (limbs_AN == limbs_B) { /* Test when A aliased to B (requires A == B on input values) */ if (memcmp(A.p, B.p, bytes) == 0) { /* Test with A aliased to B and output, since this is permitted - * don't bother with yet another test with only A and B aliased */ mbedtls_mpi_core_montmul(B.p, B.p, B.p, B.n, N.p, N.n, mm, T.p); ASSERT_COMPARE(B.p, bytes, X->p, bytes); memcpy(B.p, A.p, bytes); /* restore B from equal value A */ } /* The output may be aliased to B - last test, so we don't save B */ mbedtls_mpi_core_montmul(B.p, A.p, B.p, B.n, N.p, N.n, mm, T.p); ASSERT_COMPARE(B.p, bytes, X->p, bytes); } exit: mbedtls_mpi_free(&A); mbedtls_mpi_free(&B); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X4); mbedtls_mpi_free(&X8); mbedtls_mpi_free(&T); mbedtls_mpi_free(&R); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_get_mont_r2_unsafe_neg() { mbedtls_mpi N, RR; mbedtls_mpi_init(&N); mbedtls_mpi_init(&RR); const char *n = "7ffffffffffffff1"; /* Test for zero divisor */ TEST_EQUAL(MBEDTLS_ERR_MPI_DIVISION_BY_ZERO, mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N)); /* Test for negative input */ TEST_EQUAL(0, mbedtls_test_read_mpi(&N, n)); N.s = -1; TEST_EQUAL(MBEDTLS_ERR_MPI_NEGATIVE_VALUE, mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N)); N.s = 1; exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&RR); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_get_mont_r2_unsafe(char *input_N, char *input_RR_X4, char *input_RR_X8) { mbedtls_mpi N, RR, RR_REF; /* Select the appropriate output */ char *input_rr = (sizeof(mbedtls_mpi_uint) == 4) ? input_RR_X4 : input_RR_X8; mbedtls_mpi_init(&N); mbedtls_mpi_init(&RR); mbedtls_mpi_init(&RR_REF); /* Read inputs */ TEST_EQUAL(0, mbedtls_test_read_mpi(&N, input_N)); TEST_EQUAL(0, mbedtls_test_read_mpi(&RR_REF, input_rr)); /* All of the inputs are +ve (or zero) */ TEST_EQUAL(1, N.s); TEST_EQUAL(1, RR_REF.s); /* Test valid input */ TEST_EQUAL(0, mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N)); /* Test that the moduli is odd */ TEST_EQUAL(N.p[0] ^ 1, N.p[0] - 1); /* Output is +ve (or zero) */ TEST_EQUAL(1, RR_REF.s); /* rr is updated to a valid pointer */ TEST_ASSERT(RR.p != NULL); /* Calculated rr matches expected value */ TEST_ASSERT(mbedtls_mpi_cmp_mpi(&RR, &RR_REF) == 0); exit: mbedtls_mpi_free(&N); mbedtls_mpi_free(&RR); mbedtls_mpi_free(&RR_REF); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS */ void mpi_core_ct_uint_table_lookup(int bitlen, int window_size) { size_t limbs = BITS_TO_LIMBS(bitlen); size_t count = ((size_t) 1) << window_size; mbedtls_mpi_uint *table = NULL; mbedtls_mpi_uint *dest = NULL; ASSERT_ALLOC(table, limbs * count); ASSERT_ALLOC(dest, limbs); /* * Fill the table with a unique counter so that differences are easily * detected. (And have their relationship to the index relatively non-trivial just * to be sure.) */ for (size_t i = 0; i < count * limbs; i++) { table[i] = ~i - 1; } for (size_t i = 0; i < count; i++) { mbedtls_mpi_uint *current = table + i * limbs; memset(dest, 0x00, limbs * sizeof(*dest)); /* * We shouldn't leak anything through timing. * We need to set these in every loop as we need to make the loop * variable public for the loop head and the buffers for comparison. */ TEST_CF_SECRET(&i, sizeof(i)); TEST_CF_SECRET(dest, limbs * sizeof(*dest)); TEST_CF_SECRET(table, count * limbs * sizeof(*table)); mbedtls_mpi_core_ct_uint_table_lookup(dest, table, limbs, count, i); TEST_CF_PUBLIC(dest, limbs * sizeof(*dest)); TEST_CF_PUBLIC(table, count * limbs * sizeof(*table)); ASSERT_COMPARE(dest, limbs * sizeof(*dest), current, limbs * sizeof(*current)); TEST_CF_PUBLIC(&i, sizeof(i)); } exit: mbedtls_free(table); mbedtls_free(dest); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_fill_random(int wanted_bytes_arg, int extra_rng_bytes, int extra_limbs, int before, int expected_ret) { size_t wanted_bytes = wanted_bytes_arg; mbedtls_mpi_uint *X = NULL; size_t X_limbs = CHARS_TO_LIMBS(wanted_bytes) + extra_limbs; size_t rng_bytes = wanted_bytes + extra_rng_bytes; unsigned char *rnd_data = NULL; mbedtls_test_rnd_buf_info rnd_info = { NULL, rng_bytes, NULL, NULL }; int ret; /* Prepare an RNG with known output, limited to rng_bytes. */ ASSERT_ALLOC(rnd_data, rng_bytes); TEST_EQUAL(0, mbedtls_test_rnd_std_rand(NULL, rnd_data, rng_bytes)); rnd_info.buf = rnd_data; /* Allocate an MPI with room for wanted_bytes plus extra_limbs. * extra_limbs may be negative but the total limb count must be positive. * Fill the MPI with the byte value in before. */ TEST_LE_U(1, X_limbs); ASSERT_ALLOC(X, X_limbs); memset(X, before, X_limbs * sizeof(*X)); ret = mbedtls_mpi_core_fill_random(X, X_limbs, wanted_bytes, mbedtls_test_rnd_buffer_rand, &rnd_info); TEST_EQUAL(expected_ret, ret); if (expected_ret == 0) { /* mbedtls_mpi_core_fill_random is documented to use bytes from the * RNG as a big-endian representation of the number. We used an RNG * with known output, so check that the output contains the * expected value. Bytes above wanted_bytes must be zero. */ for (size_t i = 0; i < wanted_bytes; i++) { mbedtls_test_set_step(i); TEST_EQUAL(GET_BYTE(X, i), rnd_data[wanted_bytes - 1 - i]); } for (size_t i = wanted_bytes; i < X_limbs * ciL; i++) { mbedtls_test_set_step(i); TEST_EQUAL(GET_BYTE(X, i), 0); } } exit: mbedtls_free(rnd_data); mbedtls_free(X); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_mul(char *input_A, char *input_B, char *result) { mbedtls_mpi_uint *A = NULL; mbedtls_mpi_uint *A_orig = NULL; mbedtls_mpi_uint *B = NULL; mbedtls_mpi_uint *B_orig = NULL; mbedtls_mpi_uint *R = NULL; mbedtls_mpi_uint *X = NULL; size_t A_limbs, B_limbs, R_limbs; TEST_EQUAL(mbedtls_test_read_mpi_core(&A, &A_limbs, input_A), 0); TEST_EQUAL(mbedtls_test_read_mpi_core(&B, &B_limbs, input_B), 0); TEST_EQUAL(mbedtls_test_read_mpi_core(&R, &R_limbs, result), 0); TEST_EQUAL(R_limbs, A_limbs + B_limbs); const size_t X_limbs = A_limbs + B_limbs; const size_t X_bytes = X_limbs * sizeof(mbedtls_mpi_uint); ASSERT_ALLOC(X, X_limbs); const size_t A_bytes = A_limbs * sizeof(mbedtls_mpi_uint); ASSERT_ALLOC(A_orig, A_limbs); memcpy(A_orig, A, A_bytes); const size_t B_bytes = B_limbs * sizeof(mbedtls_mpi_uint); ASSERT_ALLOC(B_orig, B_limbs); memcpy(B_orig, B, B_bytes); /* Set result to something that is unlikely to be correct */ memset(X, '!', X_bytes); /* 1. X = A * B - result should be correct, A and B unchanged */ mbedtls_mpi_core_mul(X, A, A_limbs, B, B_limbs); ASSERT_COMPARE(X, X_bytes, R, X_bytes); ASSERT_COMPARE(A, A_bytes, A_orig, A_bytes); ASSERT_COMPARE(B, B_bytes, B_orig, B_bytes); /* 2. A == B: alias A and B - result should be correct, A and B unchanged */ if (A_bytes == B_bytes && memcmp(A, B, A_bytes) == 0) { memset(X, '!', X_bytes); mbedtls_mpi_core_mul(X, A, A_limbs, A, A_limbs); ASSERT_COMPARE(X, X_bytes, R, X_bytes); ASSERT_COMPARE(A, A_bytes, A_orig, A_bytes); } /* 3. X = B * A - result should be correct, A and B unchanged */ else { memset(X, '!', X_bytes); mbedtls_mpi_core_mul(X, B, B_limbs, A, A_limbs); ASSERT_COMPARE(X, X_bytes, R, X_bytes); ASSERT_COMPARE(A, A_bytes, A_orig, A_bytes); ASSERT_COMPARE(B, B_bytes, B_orig, B_bytes); } exit: mbedtls_free(A); mbedtls_free(A_orig); mbedtls_free(B); mbedtls_free(B_orig); mbedtls_free(R); mbedtls_free(X); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_exp_mod(char *input_N, char *input_A, char *input_E, char *input_X) { mbedtls_mpi_uint *A = NULL; mbedtls_mpi_uint *E = NULL; mbedtls_mpi_uint *N = NULL; mbedtls_mpi_uint *X = NULL; size_t A_limbs, E_limbs, N_limbs, X_limbs; const mbedtls_mpi_uint *R2 = NULL; mbedtls_mpi_uint *Y = NULL; mbedtls_mpi_uint *T = NULL; /* Legacy MPIs for computing R2 */ mbedtls_mpi N_mpi; mbedtls_mpi_init(&N_mpi); mbedtls_mpi R2_mpi; mbedtls_mpi_init(&R2_mpi); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&A, &A_limbs, input_A)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&E, &E_limbs, input_E)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&N, &N_limbs, input_N)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X)); ASSERT_ALLOC(Y, N_limbs); TEST_EQUAL(A_limbs, N_limbs); TEST_EQUAL(X_limbs, N_limbs); TEST_EQUAL(0, mbedtls_mpi_grow(&N_mpi, N_limbs)); memcpy(N_mpi.p, N, N_limbs * sizeof(*N)); N_mpi.n = N_limbs; TEST_EQUAL(0, mbedtls_mpi_core_get_mont_r2_unsafe(&R2_mpi, &N_mpi)); TEST_EQUAL(0, mbedtls_mpi_grow(&R2_mpi, N_limbs)); R2 = R2_mpi.p; size_t working_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N_limbs, E_limbs); /* No point exactly duplicating the code in mbedtls_mpi_core_exp_mod_working_limbs() * to see if the output is correct, but we can check that it's in a * reasonable range. The current calculation works out as * `1 + N_limbs * (welem + 3)`, where welem is the number of elements in * the window (1 << 1 up to 1 << 6). */ size_t min_expected_working_limbs = 1 + N_limbs * 4; size_t max_expected_working_limbs = 1 + N_limbs * 67; TEST_LE_U(min_expected_working_limbs, working_limbs); TEST_LE_U(working_limbs, max_expected_working_limbs); /* Should also be at least mbedtls_mpi_core_montmul_working_limbs() */ TEST_LE_U(mbedtls_mpi_core_montmul_working_limbs(N_limbs), working_limbs); ASSERT_ALLOC(T, working_limbs); mbedtls_mpi_core_exp_mod(Y, A, N, N_limbs, E, E_limbs, R2, T); TEST_EQUAL(0, memcmp(X, Y, N_limbs * sizeof(mbedtls_mpi_uint))); /* Check when output aliased to input */ mbedtls_mpi_core_exp_mod(A, A, N, N_limbs, E, E_limbs, R2, T); TEST_EQUAL(0, memcmp(X, A, N_limbs * sizeof(mbedtls_mpi_uint))); exit: mbedtls_free(T); mbedtls_free(A); mbedtls_free(E); mbedtls_free(N); mbedtls_free(X); mbedtls_free(Y); mbedtls_mpi_free(&N_mpi); mbedtls_mpi_free(&R2_mpi); // R2 doesn't need to be freed as it is only aliasing R2_mpi } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_sub_int(char *input_A, char *input_B, char *input_X, int borrow) { /* We are testing A - b, where A is an MPI and b is a scalar, expecting * result X with borrow borrow. However, for ease of handling we encode b * as a 1-limb MPI (B) in the .data file. */ mbedtls_mpi_uint *A = NULL; mbedtls_mpi_uint *B = NULL; mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *R = NULL; size_t A_limbs, B_limbs, X_limbs; TEST_EQUAL(0, mbedtls_test_read_mpi_core(&A, &A_limbs, input_A)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&B, &B_limbs, input_B)); TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X)); /* The MPI encoding of scalar b must be only 1 limb */ TEST_EQUAL(B_limbs, 1); /* The subtraction is fixed-width, so A and X must have the same number of limbs */ TEST_EQUAL(A_limbs, X_limbs); size_t limbs = A_limbs; ASSERT_ALLOC(R, limbs); #define TEST_COMPARE_CORE_MPIS(A, B, limbs) \ ASSERT_COMPARE(A, (limbs) * sizeof(mbedtls_mpi_uint), B, (limbs) * sizeof(mbedtls_mpi_uint)) /* 1. R = A - b. Result and borrow should be correct */ TEST_EQUAL(mbedtls_mpi_core_sub_int(R, A, B[0], limbs), borrow); TEST_COMPARE_CORE_MPIS(R, X, limbs); /* 2. A = A - b. Result and borrow should be correct */ TEST_EQUAL(mbedtls_mpi_core_sub_int(A, A, B[0], limbs), borrow); TEST_COMPARE_CORE_MPIS(A, X, limbs); exit: mbedtls_free(A); mbedtls_free(B); mbedtls_free(X); mbedtls_free(R); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_check_zero_ct(char *input_X, int expected_is_zero) { mbedtls_mpi_uint *X = NULL; size_t X_limbs; TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X)); TEST_CF_SECRET(X, X_limbs * sizeof(mbedtls_mpi_uint)); mbedtls_mpi_uint check = mbedtls_mpi_core_check_zero_ct(X, X_limbs); int is_zero = (check == 0); TEST_EQUAL(is_zero, expected_is_zero); exit: mbedtls_free(X); } /* END_CASE */