/* BEGIN_HEADER */ #include "mbedtls/gcm.h" /* Use the multipart interface to process the encrypted data in two parts * and check that the output matches the expected output. * The context must have been set up with the key. */ static int check_multipart( mbedtls_gcm_context *ctx, int mode, const data_t *iv, const data_t *add, const data_t *input, const data_t *expected_output, const data_t *tag, size_t n1, size_t n1_add) { int ok = 0; uint8_t *output = NULL; size_t n2 = input->len - n1; size_t n2_add = add->len - n1_add; size_t olen; /* Sanity checks on the test data */ TEST_ASSERT( n1 <= input->len ); TEST_ASSERT( n1_add <= add->len ); TEST_EQUAL( input->len, expected_output->len ); TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode, iv->x, iv->len ) ); TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, add->x, n1_add ) ); TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, add->x + n1_add, n2_add ) ); /* Allocate a tight buffer for each update call. This way, if the function * tries to write beyond the advertised required buffer size, this will * count as an overflow for memory sanitizers and static checkers. */ ASSERT_ALLOC( output, n1 ); olen = 0xdeadbeef; TEST_EQUAL( 0, mbedtls_gcm_update( ctx, input->x, n1, output, n1, &olen ) ); TEST_EQUAL( n1, olen ); ASSERT_COMPARE( output, olen, expected_output->x, n1 ); mbedtls_free( output ); output = NULL; ASSERT_ALLOC( output, n2 ); olen = 0xdeadbeef; TEST_EQUAL( 0, mbedtls_gcm_update( ctx, input->x + n1, n2, output, n2, &olen ) ); TEST_EQUAL( n2, olen ); ASSERT_COMPARE( output, olen, expected_output->x + n1, n2 ); mbedtls_free( output ); output = NULL; ASSERT_ALLOC( output, tag->len ); TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output, tag->len ) ); TEST_EQUAL( 0, olen ); ASSERT_COMPARE( output, tag->len, tag->x, tag->len ); mbedtls_free( output ); output = NULL; ok = 1; exit: mbedtls_free( output ); return( ok ); } static void check_cipher_with_empty_ad( mbedtls_gcm_context *ctx, int mode, const data_t *iv, const data_t *input, const data_t *expected_output, const data_t *tag, size_t ad_update_count) { size_t n; uint8_t *output = NULL; size_t olen; /* Sanity checks on the test data */ TEST_EQUAL( input->len, expected_output->len ); TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode, iv->x, iv->len ) ); for( n = 0; n < ad_update_count; n++ ) { TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, NULL, 0 ) ); } /* Allocate a tight buffer for each update call. This way, if the function * tries to write beyond the advertised required buffer size, this will * count as an overflow for memory sanitizers and static checkers. */ ASSERT_ALLOC( output, input->len ); olen = 0xdeadbeef; TEST_EQUAL( 0, mbedtls_gcm_update( ctx, input->x, input->len, output, input->len, &olen ) ); TEST_EQUAL( input->len, olen ); ASSERT_COMPARE( output, olen, expected_output->x, input->len ); mbedtls_free( output ); output = NULL; ASSERT_ALLOC( output, tag->len ); TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output, tag->len ) ); TEST_EQUAL( 0, olen ); ASSERT_COMPARE( output, tag->len, tag->x, tag->len ); exit: mbedtls_free( output ); } static void check_empty_cipher_with_ad( mbedtls_gcm_context *ctx, int mode, const data_t *iv, const data_t *add, const data_t *tag, size_t cipher_update_count) { size_t olen; size_t n; uint8_t* output_tag = NULL; TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode, iv->x, iv->len ) ); TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, add->x, add->len ) ); for( n = 0; n < cipher_update_count; n++ ) { olen = 0xdeadbeef; TEST_EQUAL( 0, mbedtls_gcm_update( ctx, NULL, 0, NULL, 0, &olen ) ); TEST_EQUAL( 0, olen ); } ASSERT_ALLOC( output_tag, tag->len ); TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output_tag, tag->len ) ); TEST_EQUAL( 0, olen ); ASSERT_COMPARE( output_tag, tag->len, tag->x, tag->len ); exit: mbedtls_free( output_tag ); } static void check_no_cipher_no_ad( mbedtls_gcm_context *ctx, int mode, const data_t *iv, const data_t *tag ) { uint8_t *output = NULL; size_t olen = 0; TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode, iv->x, iv->len ) ); ASSERT_ALLOC( output, tag->len ); TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output, tag->len ) ); TEST_EQUAL( 0, olen ); ASSERT_COMPARE( output, tag->len, tag->x, tag->len ); exit: mbedtls_free( output ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_GCM_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void gcm_bad_parameters( int cipher_id, int direction, data_t *key_str, data_t *src_str, data_t *iv_str, data_t *add_str, int tag_len_bits, int gcm_result ) { unsigned char output[128]; unsigned char tag_output[16]; mbedtls_gcm_context ctx; size_t tag_len = tag_len_bits / 8; mbedtls_gcm_init( &ctx ); memset( output, 0x00, sizeof( output ) ); memset( tag_output, 0x00, sizeof( tag_output ) ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); TEST_ASSERT( mbedtls_gcm_crypt_and_tag( &ctx, direction, src_str->len, iv_str->x, iv_str->len, add_str->x, add_str->len, src_str->x, output, tag_len, tag_output ) == gcm_result ); exit: mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_encrypt_and_tag( int cipher_id, data_t * key_str, data_t * src_str, data_t * iv_str, data_t * add_str, data_t * dst, int tag_len_bits, data_t * tag, int init_result ) { unsigned char output[128]; unsigned char tag_output[16]; mbedtls_gcm_context ctx; size_t tag_len = tag_len_bits / 8; size_t n1; size_t n1_add; mbedtls_gcm_init( &ctx ); memset(output, 0x00, 128); memset(tag_output, 0x00, 16); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == init_result ); if( init_result == 0 ) { TEST_ASSERT( mbedtls_gcm_crypt_and_tag( &ctx, MBEDTLS_GCM_ENCRYPT, src_str->len, iv_str->x, iv_str->len, add_str->x, add_str->len, src_str->x, output, tag_len, tag_output ) == 0 ); ASSERT_COMPARE( output, src_str->len, dst->x, dst->len ); ASSERT_COMPARE( tag_output, tag_len, tag->x, tag->len ); for( n1 = 0; n1 <= src_str->len; n1 += 1 ) { for( n1_add = 0; n1_add <= add_str->len; n1_add += 1 ) { mbedtls_test_set_step( n1 * 10000 + n1_add ); if( !check_multipart( &ctx, MBEDTLS_GCM_ENCRYPT, iv_str, add_str, src_str, dst, tag, n1, n1_add ) ) goto exit; } } } exit: mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_decrypt_and_verify( int cipher_id, data_t * key_str, data_t * src_str, data_t * iv_str, data_t * add_str, int tag_len_bits, data_t * tag_str, char * result, data_t * pt_result, int init_result ) { unsigned char output[128]; mbedtls_gcm_context ctx; int ret; size_t tag_len = tag_len_bits / 8; size_t n1; size_t n1_add; mbedtls_gcm_init( &ctx ); memset(output, 0x00, 128); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == init_result ); if( init_result == 0 ) { ret = mbedtls_gcm_auth_decrypt( &ctx, src_str->len, iv_str->x, iv_str->len, add_str->x, add_str->len, tag_str->x, tag_len, src_str->x, output ); if( strcmp( "FAIL", result ) == 0 ) { TEST_ASSERT( ret == MBEDTLS_ERR_GCM_AUTH_FAILED ); } else { TEST_ASSERT( ret == 0 ); ASSERT_COMPARE( output, src_str->len, pt_result->x, pt_result->len ); for( n1 = 0; n1 <= src_str->len; n1 += 1 ) { for( n1_add = 0; n1_add <= add_str->len; n1_add += 1 ) { mbedtls_test_set_step( n1 * 10000 + n1_add ); if( !check_multipart( &ctx, MBEDTLS_GCM_DECRYPT, iv_str, add_str, src_str, pt_result, tag_str, n1, n1_add ) ) goto exit; } } } } exit: mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_decrypt_and_verify_empty_cipher( int cipher_id, data_t * key_str, data_t * iv_str, data_t * add_str, data_t * tag_str, int cipher_update_calls ) { mbedtls_gcm_context ctx; mbedtls_gcm_init( &ctx ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); check_empty_cipher_with_ad( &ctx, MBEDTLS_GCM_DECRYPT, iv_str, add_str, tag_str, cipher_update_calls ); mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_decrypt_and_verify_empty_ad( int cipher_id, data_t * key_str, data_t * iv_str, data_t * src_str, data_t * tag_str, data_t * pt_result, int ad_update_calls ) { mbedtls_gcm_context ctx; mbedtls_gcm_init( &ctx ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); check_cipher_with_empty_ad( &ctx, MBEDTLS_GCM_DECRYPT, iv_str, src_str, pt_result, tag_str, ad_update_calls ); mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_decrypt_and_verify_no_ad_no_cipher( int cipher_id, data_t * key_str, data_t * iv_str, data_t * tag_str ) { mbedtls_gcm_context ctx; mbedtls_gcm_init( &ctx ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); check_no_cipher_no_ad( &ctx, MBEDTLS_GCM_DECRYPT, iv_str, tag_str ); mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_encrypt_and_tag_empty_cipher( int cipher_id, data_t * key_str, data_t * iv_str, data_t * add_str, data_t * tag_str, int cipher_update_calls ) { mbedtls_gcm_context ctx; mbedtls_gcm_init( &ctx ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); check_empty_cipher_with_ad( &ctx, MBEDTLS_GCM_ENCRYPT, iv_str, add_str, tag_str, cipher_update_calls ); exit: mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_encrypt_and_tag_empty_ad( int cipher_id, data_t * key_str, data_t * iv_str, data_t * src_str, data_t * dst, data_t * tag_str, int ad_update_calls ) { mbedtls_gcm_context ctx; mbedtls_gcm_init( &ctx ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); check_cipher_with_empty_ad( &ctx, MBEDTLS_GCM_ENCRYPT, iv_str, src_str, dst, tag_str, ad_update_calls ); exit: mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_encrypt_and_verify_no_ad_no_cipher( int cipher_id, data_t * key_str, data_t * iv_str, data_t * tag_str ) { mbedtls_gcm_context ctx; mbedtls_gcm_init( &ctx ); TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 ); check_no_cipher_no_ad( &ctx, MBEDTLS_GCM_ENCRYPT, iv_str, tag_str ); mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_invalid_param( ) { mbedtls_gcm_context ctx; unsigned char valid_buffer[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }; mbedtls_cipher_id_t valid_cipher = MBEDTLS_CIPHER_ID_AES; int invalid_bitlen = 1; mbedtls_gcm_init( &ctx ); /* mbedtls_gcm_setkey */ TEST_EQUAL( MBEDTLS_ERR_GCM_BAD_INPUT, mbedtls_gcm_setkey( &ctx, valid_cipher, valid_buffer, invalid_bitlen ) ); exit: mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void gcm_update_output_buffer_too_small( int cipher_id, int mode, data_t * key_str, const data_t *input, const data_t *iv ) { mbedtls_gcm_context ctx; uint8_t *output = NULL; size_t olen = 0; size_t output_len = input->len - 1; mbedtls_gcm_init( &ctx ); TEST_EQUAL( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ), 0 ); TEST_EQUAL( 0, mbedtls_gcm_starts( &ctx, mode, iv->x, iv->len ) ); ASSERT_ALLOC( output, output_len ); TEST_EQUAL( MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL, mbedtls_gcm_update( &ctx, input->x, input->len, output, output_len, &olen ) ); exit: mbedtls_free( output ); mbedtls_gcm_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */ void gcm_selftest( ) { TEST_ASSERT( mbedtls_gcm_self_test( 1 ) == 0 ); } /* END_CASE */