/* BEGIN_HEADER */ /* Dedicated test suite for mbedtls_mpi_core_random() and the upper-layer * functions. Due to the complexity of how these functions are tested, * we test all the layers in a single test suite, unlike the way other * functions are tested with each layer in its own test suite. */ #include "mbedtls/bignum.h" #include "mbedtls/entropy.h" #include "bignum_core.h" #include "constant_time_internal.h" /* This test suite only manipulates non-negative bignums. */ static int sign_is_valid( const mbedtls_mpi *X ) { return( X->s == 1 ); } /* A common initializer for test functions that should generate the same * sequences for reproducibility and good coverage. */ const mbedtls_test_rnd_pseudo_info rnd_pseudo_seed = { /* 16-word key */ {'T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 's', 'e', 'e', 'd', '!', 0}, /* 2-word initial state, should be zero */ 0, 0}; /* Test whether bytes represents (in big-endian base 256) a number b that * is significantly above a power of 2. That is, b must not have a long run * of unset bits after the most significant bit. * * Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}. * This function returns 1 if, when drawing a number between 0 and b, * the probability that this number is at least 2^n is not negligible. * This probability is (b - 2^n) / b and this function checks that this * number is above some threshold A. The threshold value is heuristic and * based on the needs of mpi_random_many(). */ static int is_significantly_above_a_power_of_2( data_t *bytes ) { const uint8_t *p = bytes->x; size_t len = bytes->len; unsigned x; /* Skip leading null bytes */ while( len > 0 && p[0] == 0 ) { ++p; --len; } /* 0 is not significantly above a power of 2 */ if( len == 0 ) return( 0 ); /* Extract the (up to) 2 most significant bytes */ if( len == 1 ) x = p[0]; else x = ( p[0] << 8 ) | p[1]; /* Shift the most significant bit of x to position 8 and mask it out */ while( ( x & 0xfe00 ) != 0 ) x >>= 1; x &= 0x00ff; /* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above * a power of 2 iff x is significantly above 0 compared to 2^8. * Testing x >= 2^4 amounts to picking A = 1/16 in the function * description above. */ return( x >= 0x10 ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_BIGNUM_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void mpi_core_random_basic( int min, char *bound_bytes, int expected_ret ) { /* Same RNG as in mpi_random_values */ mbedtls_test_rnd_pseudo_info rnd = rnd_pseudo_seed; size_t limbs; mbedtls_mpi_uint *lower_bound = NULL; mbedtls_mpi_uint *upper_bound = NULL; mbedtls_mpi_uint *result = NULL; TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs, bound_bytes ) ); ASSERT_ALLOC( lower_bound, limbs ); lower_bound[0] = min; ASSERT_ALLOC( result, limbs ); TEST_EQUAL( expected_ret, mbedtls_mpi_core_random( result, min, upper_bound, limbs, mbedtls_test_rnd_pseudo_rand, &rnd ) ); if( expected_ret == 0 ) { TEST_EQUAL( 0, mbedtls_mpi_core_lt_ct( result, lower_bound, limbs ) ); TEST_EQUAL( 1, mbedtls_mpi_core_lt_ct( result, upper_bound, limbs ) ); } exit: mbedtls_free( lower_bound ); mbedtls_free( upper_bound ); mbedtls_free( result ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_values( int min, char *max_hex ) { /* Same RNG as in mpi_core_random_basic */ mbedtls_test_rnd_pseudo_info rnd_core = rnd_pseudo_seed; mbedtls_test_rnd_pseudo_info rnd_legacy; memcpy( &rnd_legacy, &rnd_core, sizeof( rnd_core ) ); mbedtls_mpi max_legacy; mbedtls_mpi_init( &max_legacy ); mbedtls_mpi_uint *R_core = NULL; mbedtls_mpi R_legacy; mbedtls_mpi_init( &R_legacy ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &max_legacy, max_hex ) ); size_t limbs = max_legacy.n; ASSERT_ALLOC( R_core, limbs ); /* Call the legacy function and the core function with the same random * stream. */ int core_ret = mbedtls_mpi_core_random( R_core, min, max_legacy.p, limbs, mbedtls_test_rnd_pseudo_rand, &rnd_core ); int legacy_ret = mbedtls_mpi_random( &R_legacy, min, &max_legacy, mbedtls_test_rnd_pseudo_rand, &rnd_legacy ); /* They must return the same status, and, on success, output the * same number, with the same limb count. */ TEST_EQUAL( core_ret, legacy_ret ); if( core_ret == 0 ) { ASSERT_COMPARE( R_core, limbs * ciL, R_legacy.p, R_legacy.n * ciL ); } /* Also check that they have consumed the RNG in the same way. */ /* This may theoretically fail on rare platforms with padding in * the structure! If this is a problem in practice, change to a * field-by-field comparison. */ ASSERT_COMPARE( &rnd_core, sizeof( rnd_core ), &rnd_legacy, sizeof( rnd_legacy ) ); exit: mbedtls_mpi_free( &max_legacy ); mbedtls_free( R_core ); mbedtls_mpi_free( &R_legacy ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_many( int min, char *bound_hex, int iterations ) { /* Generate numbers in the range 1..bound-1. Do it iterations times. * This function assumes that the value of bound is at least 2 and * that iterations is large enough that a one-in-2^iterations chance * effectively never occurs. */ data_t bound_bytes = {NULL, 0}; mbedtls_mpi_uint *upper_bound = NULL; size_t limbs; size_t n_bits; mbedtls_mpi_uint *result = NULL; size_t b; /* If upper_bound is small, stats[b] is the number of times the value b * has been generated. Otherwise stats[b] is the number of times a * value with bit b set has been generated. */ size_t *stats = NULL; size_t stats_len; int full_stats; size_t i; TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs, bound_hex ) ); ASSERT_ALLOC( result, limbs ); n_bits = mbedtls_mpi_core_bitlen( upper_bound, limbs ); /* Consider a bound "small" if it's less than 2^5. This value is chosen * to be small enough that the probability of missing one value is * negligible given the number of iterations. It must be less than * 256 because some of the code below assumes that "small" values * fit in a byte. */ if( n_bits <= 5 ) { full_stats = 1; stats_len = (uint8_t) upper_bound[0]; } else { full_stats = 0; stats_len = n_bits; } ASSERT_ALLOC( stats, stats_len ); for( i = 0; i < (size_t) iterations; i++ ) { mbedtls_test_set_step( i ); TEST_EQUAL( 0, mbedtls_mpi_core_random( result, min, upper_bound, limbs, mbedtls_test_rnd_std_rand, NULL ) ); /* Temporarily use a legacy MPI for analysis, because the * necessary auxiliary functions don't exist yet in core. */ mbedtls_mpi B = {1, limbs, upper_bound}; mbedtls_mpi R = {1, limbs, result}; TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) < 0 ); TEST_ASSERT( mbedtls_mpi_cmp_int( &R, min ) >= 0 ); if( full_stats ) { uint8_t value; TEST_EQUAL( 0, mbedtls_mpi_write_binary( &R, &value, 1 ) ); TEST_ASSERT( value < stats_len ); ++stats[value]; } else { for( b = 0; b < n_bits; b++ ) stats[b] += mbedtls_mpi_get_bit( &R, b ); } } if( full_stats ) { for( b = min; b < stats_len; b++ ) { mbedtls_test_set_step( 1000000 + b ); /* Assert that each value has been reached at least once. * This is almost guaranteed if the iteration count is large * enough. This is a very crude way of checking the distribution. */ TEST_ASSERT( stats[b] > 0 ); } } else { bound_bytes.len = limbs * sizeof( mbedtls_mpi_uint ); ASSERT_ALLOC( bound_bytes.x, bound_bytes.len ); mbedtls_mpi_core_write_be( upper_bound, limbs, bound_bytes.x, bound_bytes.len ); int statistically_safe_all_the_way = is_significantly_above_a_power_of_2( &bound_bytes ); for( b = 0; b < n_bits; b++ ) { mbedtls_test_set_step( 1000000 + b ); /* Assert that each bit has been set in at least one result and * clear in at least one result. Provided that iterations is not * too small, it would be extremely unlikely for this not to be * the case if the results are uniformly distributed. * * As an exception, the top bit may legitimately never be set * if bound is a power of 2 or only slightly above. */ if( statistically_safe_all_the_way || b != n_bits - 1 ) { TEST_ASSERT( stats[b] > 0 ); } TEST_ASSERT( stats[b] < (size_t) iterations ); } } exit: mbedtls_free( bound_bytes.x ); mbedtls_free( upper_bound ); mbedtls_free( result ); mbedtls_free( stats ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_sizes( int min, data_t *bound_bytes, int nlimbs, int before ) { mbedtls_mpi upper_bound; mbedtls_mpi result; mbedtls_mpi_init( &upper_bound ); mbedtls_mpi_init( &result ); if( before != 0 ) { /* Set result to sign(before) * 2^(|before|-1) */ TEST_ASSERT( mbedtls_mpi_lset( &result, before > 0 ? 1 : -1 ) == 0 ); if( before < 0 ) before = - before; TEST_ASSERT( mbedtls_mpi_shift_l( &result, before - 1 ) == 0 ); } TEST_EQUAL( 0, mbedtls_mpi_grow( &result, nlimbs ) ); TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound, bound_bytes->x, bound_bytes->len ) ); TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound, mbedtls_test_rnd_std_rand, NULL ) ); TEST_ASSERT( sign_is_valid( &result ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 ); TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 ); exit: mbedtls_mpi_free( &upper_bound ); mbedtls_mpi_free( &result ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_fail( int min, data_t *bound_bytes, int expected_ret ) { mbedtls_mpi upper_bound; mbedtls_mpi result; int actual_ret; mbedtls_mpi_init( &upper_bound ); mbedtls_mpi_init( &result ); TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound, bound_bytes->x, bound_bytes->len ) ); actual_ret = mbedtls_mpi_random( &result, min, &upper_bound, mbedtls_test_rnd_std_rand, NULL ); TEST_EQUAL( expected_ret, actual_ret ); exit: mbedtls_mpi_free( &upper_bound ); mbedtls_mpi_free( &result ); } /* END_CASE */