/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #include "common.h" #if defined(MBEDTLS_SHA256_C) #include "mbedtls/sha256.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #include #define mbedtls_printf printf #define mbedtls_calloc calloc #define mbedtls_free free #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST */ #if defined(__aarch64__) # if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \ defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) # include # endif # if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) # if defined(__unix__) # if defined(__linux__) /* Our preferred method of detection is getauxval() */ # include # endif /* Use SIGILL on Unix, and fall back to it on Linux */ # include # endif # endif #elif defined(_M_ARM64) # if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \ defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) # include # endif #else # undef MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY # undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT #endif #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) /* * Capability detection code comes early, so we can disable * MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found */ #if defined(HWCAP_SHA2) static int mbedtls_a64_crypto_sha256_determine_support( void ) { return( ( getauxval( AT_HWCAP ) & HWCAP_SHA2 ) ? 1 : 0 ); } #elif defined(__APPLE__) static int mbedtls_a64_crypto_sha256_determine_support( void ) { return( 1 ); } #elif defined(_M_ARM64) #define WIN32_LEAN_AND_MEAN #include #include static int mbedtls_a64_crypto_sha256_determine_support( void ) { return( IsProcessorFeaturePresent( PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE ) ? 1 : 0 ); } #elif defined(__unix__) && defined(SIG_SETMASK) /* Detection with SIGILL, setjmp() and longjmp() */ #include #include #ifndef asm #define asm __asm__ #endif static jmp_buf return_from_sigill; /* * A64 SHA256 support detection via SIGILL */ static void sigill_handler( int signal ) { (void) signal; longjmp( return_from_sigill, 1 ); } static int mbedtls_a64_crypto_sha256_determine_support( void ) { struct sigaction old_action, new_action; sigset_t old_mask; if( sigprocmask( 0, NULL, &old_mask ) ) return( 0 ); sigemptyset( &new_action.sa_mask ); new_action.sa_flags = 0; new_action.sa_handler = sigill_handler; sigaction( SIGILL, &new_action, &old_action ); static int ret = 0; if( setjmp( return_from_sigill ) == 0 ) /* First return only */ { /* If this traps, we will return a second time from setjmp() with 1 */ asm( "sha256h q0, q0, v0.4s" : : : "v0" ); ret = 1; } sigaction( SIGILL, &old_action, NULL ); sigprocmask( SIG_SETMASK, &old_mask, NULL ); return( ret ); } #else #warning "No mechanism to detect A64_CRYPTO found, using C code only" #undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT #endif /* HWCAP_SHA2, __APPLE__, __unix__ && SIG_SETMASK */ #endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */ #define SHA256_VALIDATE_RET(cond) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_SHA256_BAD_INPUT_DATA ) #define SHA256_VALIDATE(cond) MBEDTLS_INTERNAL_VALIDATE( cond ) #if !defined(MBEDTLS_SHA256_ALT) #define SHA256_BLOCK_SIZE 64 void mbedtls_sha256_init( mbedtls_sha256_context *ctx ) { SHA256_VALIDATE( ctx != NULL ); memset( ctx, 0, sizeof( mbedtls_sha256_context ) ); } void mbedtls_sha256_free( mbedtls_sha256_context *ctx ) { if( ctx == NULL ) return; mbedtls_platform_zeroize( ctx, sizeof( mbedtls_sha256_context ) ); } void mbedtls_sha256_clone( mbedtls_sha256_context *dst, const mbedtls_sha256_context *src ) { SHA256_VALIDATE( dst != NULL ); SHA256_VALIDATE( src != NULL ); *dst = *src; } /* * SHA-256 context setup */ int mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 ) { SHA256_VALIDATE_RET( ctx != NULL ); #if defined(MBEDTLS_SHA224_C) SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 ); #else SHA256_VALIDATE_RET( is224 == 0 ); #endif ctx->total[0] = 0; ctx->total[1] = 0; if( is224 == 0 ) { /* SHA-256 */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } else { #if defined(MBEDTLS_SHA224_C) /* SHA-224 */ ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; #endif } ctx->is224 = is224; return( 0 ); } #if !defined(MBEDTLS_SHA256_PROCESS_ALT) static const uint32_t K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; #endif #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \ defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) # define mbedtls_internal_sha256_process_many_a64_crypto mbedtls_internal_sha256_process_many # define mbedtls_internal_sha256_process_a64_crypto mbedtls_internal_sha256_process #endif static size_t mbedtls_internal_sha256_process_many_a64_crypto( mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len ) { uint32x4_t abcd = vld1q_u32( &ctx->state[0] ); uint32x4_t efgh = vld1q_u32( &ctx->state[4] ); size_t processed = 0; for( ; len >= SHA256_BLOCK_SIZE; processed += SHA256_BLOCK_SIZE, msg += SHA256_BLOCK_SIZE, len -= SHA256_BLOCK_SIZE ) { uint32x4_t tmp, abcd_prev; uint32x4_t abcd_orig = abcd; uint32x4_t efgh_orig = efgh; uint32x4_t sched0 = (uint32x4_t) vld1q_u8( msg + 16 * 0 ); uint32x4_t sched1 = (uint32x4_t) vld1q_u8( msg + 16 * 1 ); uint32x4_t sched2 = (uint32x4_t) vld1q_u8( msg + 16 * 2 ); uint32x4_t sched3 = (uint32x4_t) vld1q_u8( msg + 16 * 3 ); #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* Will be true if not defined */ /* Untested on BE */ sched0 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched0 ) ) ); sched1 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched1 ) ) ); sched2 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched2 ) ) ); sched3 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched3 ) ) ); #endif /* Rounds 0 to 3 */ tmp = vaddq_u32( sched0, vld1q_u32( &K[0] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); /* Rounds 4 to 7 */ tmp = vaddq_u32( sched1, vld1q_u32( &K[4] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); /* Rounds 8 to 11 */ tmp = vaddq_u32( sched2, vld1q_u32( &K[8] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); /* Rounds 12 to 15 */ tmp = vaddq_u32( sched3, vld1q_u32( &K[12] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); for( int t = 16; t < 64; t += 16 ) { /* Rounds t to t + 3 */ sched0 = vsha256su1q_u32( vsha256su0q_u32( sched0, sched1 ), sched2, sched3 ); tmp = vaddq_u32( sched0, vld1q_u32( &K[t] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); /* Rounds t + 4 to t + 7 */ sched1 = vsha256su1q_u32( vsha256su0q_u32( sched1, sched2 ), sched3, sched0 ); tmp = vaddq_u32( sched1, vld1q_u32( &K[t + 4] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); /* Rounds t + 8 to t + 11 */ sched2 = vsha256su1q_u32( vsha256su0q_u32( sched2, sched3 ), sched0, sched1 ); tmp = vaddq_u32( sched2, vld1q_u32( &K[t + 8] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); /* Rounds t + 12 to t + 15 */ sched3 = vsha256su1q_u32( vsha256su0q_u32( sched3, sched0 ), sched1, sched2 ); tmp = vaddq_u32( sched3, vld1q_u32( &K[t + 12] ) ); abcd_prev = abcd; abcd = vsha256hq_u32( abcd_prev, efgh, tmp ); efgh = vsha256h2q_u32( efgh, abcd_prev, tmp ); } abcd = vaddq_u32( abcd, abcd_orig ); efgh = vaddq_u32( efgh, efgh_orig ); } vst1q_u32( &ctx->state[0], abcd ); vst1q_u32( &ctx->state[4], efgh ); return( processed ); } int mbedtls_internal_sha256_process_a64_crypto( mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_SIZE] ) { return( ( mbedtls_internal_sha256_process_many_a64_crypto( ctx, data, SHA256_BLOCK_SIZE ) == SHA256_BLOCK_SIZE ) ? 0 : -1 ); } #endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */ #if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) #define mbedtls_internal_sha256_process_many_c mbedtls_internal_sha256_process_many #define mbedtls_internal_sha256_process_c mbedtls_internal_sha256_process #endif #if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \ !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) #define SHR(x,n) (((x) & 0xFFFFFFFF) >> (n)) #define ROTR(x,n) (SHR(x,n) | ((x) << (32 - (n)))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) #define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define R(t) \ ( \ local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \ S0(local.W[(t) - 15]) + local.W[(t) - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ do \ { \ local.temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \ local.temp2 = S2(a) + F0((a),(b),(c)); \ (d) += local.temp1; (h) = local.temp1 + local.temp2; \ } while( 0 ) int mbedtls_internal_sha256_process_c( mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_SIZE] ) { struct { uint32_t temp1, temp2, W[64]; uint32_t A[8]; } local; unsigned int i; SHA256_VALIDATE_RET( ctx != NULL ); SHA256_VALIDATE_RET( (const unsigned char *)data != NULL ); for( i = 0; i < 8; i++ ) local.A[i] = ctx->state[i]; #if defined(MBEDTLS_SHA256_SMALLER) for( i = 0; i < 64; i++ ) { if( i < 16 ) local.W[i] = MBEDTLS_GET_UINT32_BE( data, 4 * i ); else R( i ); P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i], K[i] ); local.temp1 = local.A[7]; local.A[7] = local.A[6]; local.A[6] = local.A[5]; local.A[5] = local.A[4]; local.A[4] = local.A[3]; local.A[3] = local.A[2]; local.A[2] = local.A[1]; local.A[1] = local.A[0]; local.A[0] = local.temp1; } #else /* MBEDTLS_SHA256_SMALLER */ for( i = 0; i < 16; i++ ) local.W[i] = MBEDTLS_GET_UINT32_BE( data, 4 * i ); for( i = 0; i < 16; i += 8 ) { P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0] ); P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1] ); P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2] ); P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3] ); P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4] ); P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5] ); P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6] ); P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7] ); } for( i = 16; i < 64; i += 8 ) { P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], R(i+0), K[i+0] ); P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], R(i+1), K[i+1] ); P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], R(i+2), K[i+2] ); P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], R(i+3), K[i+3] ); P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], R(i+4), K[i+4] ); P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], R(i+5), K[i+5] ); P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], R(i+6), K[i+6] ); P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], R(i+7), K[i+7] ); } #endif /* MBEDTLS_SHA256_SMALLER */ for( i = 0; i < 8; i++ ) ctx->state[i] += local.A[i]; /* Zeroise buffers and variables to clear sensitive data from memory. */ mbedtls_platform_zeroize( &local, sizeof( local ) ); return( 0 ); } #endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */ #if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) static size_t mbedtls_internal_sha256_process_many_c( mbedtls_sha256_context *ctx, const uint8_t *data, size_t len ) { size_t processed = 0; while( len >= SHA256_BLOCK_SIZE ) { if( mbedtls_internal_sha256_process_c( ctx, data ) != 0 ) return( 0 ); data += SHA256_BLOCK_SIZE; len -= SHA256_BLOCK_SIZE; processed += SHA256_BLOCK_SIZE; } return( processed ); } #endif /* !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */ #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) static int mbedtls_a64_crypto_sha256_has_support( void ) { static int done = 0; static int supported = 0; if( !done ) { supported = mbedtls_a64_crypto_sha256_determine_support(); done = 1; } return( supported ); } static size_t mbedtls_internal_sha256_process_many( mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len ) { if( mbedtls_a64_crypto_sha256_has_support() ) return( mbedtls_internal_sha256_process_many_a64_crypto( ctx, msg, len ) ); else return( mbedtls_internal_sha256_process_many_c( ctx, msg, len ) ); } int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_SIZE] ) { if( mbedtls_a64_crypto_sha256_has_support() ) return( mbedtls_internal_sha256_process_a64_crypto( ctx, data ) ); else return( mbedtls_internal_sha256_process_c( ctx, data ) ); } #endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */ /* * SHA-256 process buffer */ int mbedtls_sha256_update( mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t fill; uint32_t left; SHA256_VALIDATE_RET( ctx != NULL ); SHA256_VALIDATE_RET( ilen == 0 || input != NULL ); if( ilen == 0 ) return( 0 ); left = ctx->total[0] & 0x3F; fill = SHA256_BLOCK_SIZE - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < (uint32_t) ilen ) ctx->total[1]++; if( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) return( ret ); input += fill; ilen -= fill; left = 0; } while( ilen >= SHA256_BLOCK_SIZE ) { size_t processed = mbedtls_internal_sha256_process_many( ctx, input, ilen ); if( processed < SHA256_BLOCK_SIZE ) return( MBEDTLS_ERR_ERROR_GENERIC_ERROR ); input += processed; ilen -= processed; } if( ilen > 0 ) memcpy( (void *) (ctx->buffer + left), input, ilen ); return( 0 ); } /* * SHA-256 final digest */ int mbedtls_sha256_finish( mbedtls_sha256_context *ctx, unsigned char *output ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; uint32_t used; uint32_t high, low; SHA256_VALIDATE_RET( ctx != NULL ); SHA256_VALIDATE_RET( (unsigned char *)output != NULL ); /* * Add padding: 0x80 then 0x00 until 8 bytes remain for the length */ used = ctx->total[0] & 0x3F; ctx->buffer[used++] = 0x80; if( used <= 56 ) { /* Enough room for padding + length in current block */ memset( ctx->buffer + used, 0, 56 - used ); } else { /* We'll need an extra block */ memset( ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used ); if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) return( ret ); memset( ctx->buffer, 0, 56 ); } /* * Add message length */ high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); MBEDTLS_PUT_UINT32_BE( high, ctx->buffer, 56 ); MBEDTLS_PUT_UINT32_BE( low, ctx->buffer, 60 ); if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) return( ret ); /* * Output final state */ MBEDTLS_PUT_UINT32_BE( ctx->state[0], output, 0 ); MBEDTLS_PUT_UINT32_BE( ctx->state[1], output, 4 ); MBEDTLS_PUT_UINT32_BE( ctx->state[2], output, 8 ); MBEDTLS_PUT_UINT32_BE( ctx->state[3], output, 12 ); MBEDTLS_PUT_UINT32_BE( ctx->state[4], output, 16 ); MBEDTLS_PUT_UINT32_BE( ctx->state[5], output, 20 ); MBEDTLS_PUT_UINT32_BE( ctx->state[6], output, 24 ); #if defined(MBEDTLS_SHA224_C) if( ctx->is224 == 0 ) #endif MBEDTLS_PUT_UINT32_BE( ctx->state[7], output, 28 ); return( 0 ); } #endif /* !MBEDTLS_SHA256_ALT */ /* * output = SHA-256( input buffer ) */ int mbedtls_sha256( const unsigned char *input, size_t ilen, unsigned char *output, int is224 ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_sha256_context ctx; #if defined(MBEDTLS_SHA224_C) SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 ); #else SHA256_VALIDATE_RET( is224 == 0 ); #endif SHA256_VALIDATE_RET( ilen == 0 || input != NULL ); SHA256_VALIDATE_RET( (unsigned char *)output != NULL ); mbedtls_sha256_init( &ctx ); if( ( ret = mbedtls_sha256_starts( &ctx, is224 ) ) != 0 ) goto exit; if( ( ret = mbedtls_sha256_update( &ctx, input, ilen ) ) != 0 ) goto exit; if( ( ret = mbedtls_sha256_finish( &ctx, output ) ) != 0 ) goto exit; exit: mbedtls_sha256_free( &ctx ); return( ret ); } #if defined(MBEDTLS_SELF_TEST) /* * FIPS-180-2 test vectors */ static const unsigned char sha256_test_buf[3][57] = { { "abc" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" }, { "" } }; static const size_t sha256_test_buflen[3] = { 3, 56, 1000 }; static const unsigned char sha256_test_sum[6][32] = { /* * SHA-224 test vectors */ { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22, 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3, 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7, 0xE3, 0x6C, 0x9D, 0xA7 }, { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC, 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50, 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19, 0x52, 0x52, 0x25, 0x25 }, { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8, 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B, 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE, 0x4E, 0xE7, 0xAD, 0x67 }, /* * SHA-256 test vectors */ { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA, 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23, 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C, 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD }, { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8, 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39, 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67, 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 }, { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92, 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67, 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E, 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 } }; /* * Checkup routine */ int mbedtls_sha256_self_test( int verbose ) { int i, j, k, buflen, ret = 0; unsigned char *buf; unsigned char sha256sum[32]; mbedtls_sha256_context ctx; buf = mbedtls_calloc( 1024, sizeof(unsigned char) ); if( NULL == buf ) { if( verbose != 0 ) mbedtls_printf( "Buffer allocation failed\n" ); return( 1 ); } mbedtls_sha256_init( &ctx ); for( i = 0; i < 6; i++ ) { j = i % 3; k = i < 3; if( verbose != 0 ) mbedtls_printf( " SHA-%d test #%d: ", 256 - k * 32, j + 1 ); if( ( ret = mbedtls_sha256_starts( &ctx, k ) ) != 0 ) goto fail; if( j == 2 ) { memset( buf, 'a', buflen = 1000 ); for( j = 0; j < 1000; j++ ) { ret = mbedtls_sha256_update( &ctx, buf, buflen ); if( ret != 0 ) goto fail; } } else { ret = mbedtls_sha256_update( &ctx, sha256_test_buf[j], sha256_test_buflen[j] ); if( ret != 0 ) goto fail; } if( ( ret = mbedtls_sha256_finish( &ctx, sha256sum ) ) != 0 ) goto fail; if( memcmp( sha256sum, sha256_test_sum[i], 32 - k * 4 ) != 0 ) { ret = 1; goto fail; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); goto exit; fail: if( verbose != 0 ) mbedtls_printf( "failed\n" ); exit: mbedtls_sha256_free( &ctx ); mbedtls_free( buf ); return( ret ); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_SHA256_C */