/* * Self-test demonstration program * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ #define MBEDTLS_ALLOW_PRIVATE_ACCESS #include "mbedtls/build_info.h" #include "mbedtls/entropy.h" #include "mbedtls/hmac_drbg.h" #include "mbedtls/ctr_drbg.h" #include "mbedtls/dhm.h" #include "mbedtls/gcm.h" #include "mbedtls/ccm.h" #include "mbedtls/cmac.h" #include "mbedtls/md5.h" #include "mbedtls/ripemd160.h" #include "mbedtls/sha1.h" #include "mbedtls/sha256.h" #include "mbedtls/sha512.h" #include "mbedtls/sha3.h" #include "mbedtls/des.h" #include "mbedtls/aes.h" #include "mbedtls/camellia.h" #include "mbedtls/aria.h" #include "mbedtls/chacha20.h" #include "mbedtls/poly1305.h" #include "mbedtls/chachapoly.h" #include "mbedtls/base64.h" #include "mbedtls/bignum.h" #include "mbedtls/rsa.h" #include "mbedtls/x509.h" #include "mbedtls/pkcs5.h" #include "mbedtls/ecp.h" #include "mbedtls/ecjpake.h" #include "mbedtls/timing.h" #include "mbedtls/nist_kw.h" #include "mbedtls/debug.h" #include #include #include "mbedtls/platform.h" #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) #include "mbedtls/memory_buffer_alloc.h" #endif #if defined MBEDTLS_SELF_TEST /* Sanity check for malloc. This is not expected to fail, and is rather * intended to display potentially useful information about the platform, * in particular the behavior of malloc(0). */ static int calloc_self_test(int verbose) { int failures = 0; void *empty1 = mbedtls_calloc(0, 1); void *empty2 = mbedtls_calloc(0, 1); void *buffer1 = mbedtls_calloc(1, 1); void *buffer2 = mbedtls_calloc(1, 1); unsigned int buffer_3_size = 256; unsigned int buffer_4_size = 4097; /* Allocate more than the usual page size */ unsigned char *buffer3 = mbedtls_calloc(buffer_3_size, 1); unsigned char *buffer4 = mbedtls_calloc(buffer_4_size, 1); if (empty1 == NULL && empty2 == NULL) { if (verbose) { mbedtls_printf(" CALLOC(0,1): passed (NULL)\n"); } } else if (empty1 == NULL || empty2 == NULL) { if (verbose) { mbedtls_printf(" CALLOC(0,1): failed (mix of NULL and non-NULL)\n"); } ++failures; } else if (empty1 == empty2) { if (verbose) { mbedtls_printf(" CALLOC(0,1): passed (same non-null)\n"); } } else { if (verbose) { mbedtls_printf(" CALLOC(0,1): passed (distinct non-null)\n"); } } mbedtls_free(empty1); mbedtls_free(empty2); empty1 = mbedtls_calloc(1, 0); empty2 = mbedtls_calloc(1, 0); if (empty1 == NULL && empty2 == NULL) { if (verbose) { mbedtls_printf(" CALLOC(1,0): passed (NULL)\n"); } } else if (empty1 == NULL || empty2 == NULL) { if (verbose) { mbedtls_printf(" CALLOC(1,0): failed (mix of NULL and non-NULL)\n"); } ++failures; } else if (empty1 == empty2) { if (verbose) { mbedtls_printf(" CALLOC(1,0): passed (same non-null)\n"); } } else { if (verbose) { mbedtls_printf(" CALLOC(1,0): passed (distinct non-null)\n"); } } if (buffer1 == NULL || buffer2 == NULL) { if (verbose) { mbedtls_printf(" CALLOC(1): failed (NULL)\n"); } ++failures; } else if (buffer1 == buffer2) { if (verbose) { mbedtls_printf(" CALLOC(1): failed (same buffer twice)\n"); } ++failures; } else { if (verbose) { mbedtls_printf(" CALLOC(1): passed\n"); } } mbedtls_free(buffer1); buffer1 = mbedtls_calloc(1, 1); if (buffer1 == NULL) { if (verbose) { mbedtls_printf(" CALLOC(1 again): failed (NULL)\n"); } ++failures; } else { if (verbose) { mbedtls_printf(" CALLOC(1 again): passed\n"); } } for (unsigned int i = 0; i < buffer_3_size; i++) { if (buffer3[i] != 0) { ++failures; if (verbose) { mbedtls_printf(" CALLOC(%u): failed (memory not initialized to 0)\n", buffer_3_size); } break; } } for (unsigned int i = 0; i < buffer_4_size; i++) { if (buffer4[i] != 0) { ++failures; if (verbose) { mbedtls_printf(" CALLOC(%u): failed (memory not initialized to 0)\n", buffer_4_size); } break; } } if (verbose) { mbedtls_printf("\n"); } mbedtls_free(empty1); mbedtls_free(empty2); mbedtls_free(buffer1); mbedtls_free(buffer2); mbedtls_free(buffer3); mbedtls_free(buffer4); return failures; } #endif /* MBEDTLS_SELF_TEST */ static int test_snprintf(size_t n, const char *ref_buf, int ref_ret) { int ret; char buf[10] = "xxxxxxxxx"; const char ref[10] = "xxxxxxxxx"; ret = mbedtls_snprintf(buf, n, "%s", "123"); if (ret < 0 || (size_t) ret >= n) { ret = -1; } if (strncmp(ref_buf, buf, sizeof(buf)) != 0 || ref_ret != ret || memcmp(buf + n, ref + n, sizeof(buf) - n) != 0) { return 1; } return 0; } static int run_test_snprintf(void) { return test_snprintf(0, "xxxxxxxxx", -1) != 0 || test_snprintf(1, "", -1) != 0 || test_snprintf(2, "1", -1) != 0 || test_snprintf(3, "12", -1) != 0 || test_snprintf(4, "123", 3) != 0 || test_snprintf(5, "123", 3) != 0; } /* * Check if a seed file is present, and if not create one for the entropy * self-test. If this fails, we attempt the test anyway, so no error is passed * back. */ #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_ENTROPY_C) #if defined(MBEDTLS_ENTROPY_NV_SEED) && !defined(MBEDTLS_NO_PLATFORM_ENTROPY) static void create_entropy_seed_file(void) { int result; size_t output_len = 0; unsigned char seed_value[MBEDTLS_ENTROPY_BLOCK_SIZE]; /* Attempt to read the entropy seed file. If this fails - attempt to write * to the file to ensure one is present. */ result = mbedtls_platform_std_nv_seed_read(seed_value, MBEDTLS_ENTROPY_BLOCK_SIZE); if (0 == result) { return; } result = mbedtls_platform_entropy_poll(NULL, seed_value, MBEDTLS_ENTROPY_BLOCK_SIZE, &output_len); if (0 != result) { return; } if (MBEDTLS_ENTROPY_BLOCK_SIZE != output_len) { return; } mbedtls_platform_std_nv_seed_write(seed_value, MBEDTLS_ENTROPY_BLOCK_SIZE); } #endif int mbedtls_entropy_self_test_wrapper(int verbose) { #if defined(MBEDTLS_ENTROPY_NV_SEED) && !defined(MBEDTLS_NO_PLATFORM_ENTROPY) create_entropy_seed_file(); #endif return mbedtls_entropy_self_test(verbose); } #endif #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) int mbedtls_memory_buffer_alloc_free_and_self_test(int verbose) { if (verbose != 0) { #if defined(MBEDTLS_MEMORY_DEBUG) mbedtls_memory_buffer_alloc_status(); #endif } mbedtls_memory_buffer_alloc_free(); return mbedtls_memory_buffer_alloc_self_test(verbose); } #endif typedef struct { const char *name; int (*function)(int); } selftest_t; const selftest_t selftests[] = { { "calloc", calloc_self_test }, #if defined(MBEDTLS_MD5_C) { "md5", mbedtls_md5_self_test }, #endif #if defined(MBEDTLS_RIPEMD160_C) { "ripemd160", mbedtls_ripemd160_self_test }, #endif #if defined(MBEDTLS_SHA1_C) { "sha1", mbedtls_sha1_self_test }, #endif #if defined(MBEDTLS_SHA224_C) { "sha224", mbedtls_sha224_self_test }, #endif #if defined(MBEDTLS_SHA256_C) { "sha256", mbedtls_sha256_self_test }, #endif #if defined(MBEDTLS_SHA384_C) { "sha384", mbedtls_sha384_self_test }, #endif #if defined(MBEDTLS_SHA512_C) { "sha512", mbedtls_sha512_self_test }, #endif #if defined(MBEDTLS_SHA3_C) { "sha3", mbedtls_sha3_self_test }, #endif #if defined(MBEDTLS_DES_C) { "des", mbedtls_des_self_test }, #endif #if defined(MBEDTLS_AES_C) { "aes", mbedtls_aes_self_test }, #endif #if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_AES_C) { "gcm", mbedtls_gcm_self_test }, #endif #if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_AES_C) { "ccm", mbedtls_ccm_self_test }, #endif #if defined(MBEDTLS_NIST_KW_C) && defined(MBEDTLS_AES_C) { "nist_kw", mbedtls_nist_kw_self_test }, #endif #if defined(MBEDTLS_CMAC_C) { "cmac", mbedtls_cmac_self_test }, #endif #if defined(MBEDTLS_CHACHA20_C) { "chacha20", mbedtls_chacha20_self_test }, #endif #if defined(MBEDTLS_POLY1305_C) { "poly1305", mbedtls_poly1305_self_test }, #endif #if defined(MBEDTLS_CHACHAPOLY_C) { "chacha20-poly1305", mbedtls_chachapoly_self_test }, #endif #if defined(MBEDTLS_BASE64_C) { "base64", mbedtls_base64_self_test }, #endif #if defined(MBEDTLS_BIGNUM_C) { "mpi", mbedtls_mpi_self_test }, #endif #if defined(MBEDTLS_RSA_C) { "rsa", mbedtls_rsa_self_test }, #endif #if defined(MBEDTLS_CAMELLIA_C) { "camellia", mbedtls_camellia_self_test }, #endif #if defined(MBEDTLS_ARIA_C) { "aria", mbedtls_aria_self_test }, #endif #if defined(MBEDTLS_CTR_DRBG_C) { "ctr_drbg", mbedtls_ctr_drbg_self_test }, #endif #if defined(MBEDTLS_HMAC_DRBG_C) { "hmac_drbg", mbedtls_hmac_drbg_self_test }, #endif #if defined(MBEDTLS_ECP_C) { "ecp", mbedtls_ecp_self_test }, #endif #if defined(MBEDTLS_ECJPAKE_C) { "ecjpake", mbedtls_ecjpake_self_test }, #endif #if defined(MBEDTLS_DHM_C) { "dhm", mbedtls_dhm_self_test }, #endif #if defined(MBEDTLS_ENTROPY_C) { "entropy", mbedtls_entropy_self_test_wrapper }, #endif #if defined(MBEDTLS_PKCS5_C) { "pkcs5", mbedtls_pkcs5_self_test }, #endif /* Heap test comes last */ #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) { "memory_buffer_alloc", mbedtls_memory_buffer_alloc_free_and_self_test }, #endif { NULL, NULL } }; #endif /* MBEDTLS_SELF_TEST */ int main(int argc, char *argv[]) { #if defined(MBEDTLS_SELF_TEST) const selftest_t *test; #endif /* MBEDTLS_SELF_TEST */ char **argp; int v = 1; /* v=1 for verbose mode */ int exclude_mode = 0; int suites_tested = 0, suites_failed = 0; #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) && defined(MBEDTLS_SELF_TEST) unsigned char buf[1000000]; #endif void *pointer; /* * Check some basic platform requirements as specified in README.md */ if (SIZE_MAX < INT_MAX || SIZE_MAX < UINT_MAX) { mbedtls_printf("SIZE_MAX must be at least as big as INT_MAX and UINT_MAX\n"); mbedtls_exit(MBEDTLS_EXIT_FAILURE); } if (sizeof(int) < 4) { mbedtls_printf("int must be at least 32 bits\n"); mbedtls_exit(MBEDTLS_EXIT_FAILURE); } if (sizeof(size_t) < 4) { mbedtls_printf("size_t must be at least 32 bits\n"); mbedtls_exit(MBEDTLS_EXIT_FAILURE); } uint32_t endian_test = 0x12345678; char *p = (char *) &endian_test; if (!(p[0] == 0x12 && p[1] == 0x34 && p[2] == 0x56 && p[3] == 0x78) && !(p[3] == 0x12 && p[2] == 0x34 && p[1] == 0x56 && p[0] == 0x78)) { mbedtls_printf("Mixed-endian platforms are not supported\n"); mbedtls_exit(MBEDTLS_EXIT_FAILURE); } /* * The C standard doesn't guarantee that all-bits-0 is the representation * of a NULL pointer. We do however use that in our code for initializing * structures, which should work on every modern platform. Let's be sure. */ memset(&pointer, 0, sizeof(void *)); if (pointer != NULL) { mbedtls_printf("all-bits-zero is not a NULL pointer\n"); mbedtls_exit(MBEDTLS_EXIT_FAILURE); } /* * The C standard allows padding bits in the representation * of standard integer types, but our code does currently not * support them. * * Here we check that the underlying C implementation doesn't * use padding bits, and fail cleanly if it does. * * The check works by casting the maximum value representable * by a given integer type into the unpadded integer type of the * same bit-width and checking that it agrees with the maximum value * of that unpadded type. For example, for a 4-byte int, * MAX_INT should be 0x7fffffff in int32_t. This assumes that * CHAR_BIT == 8, which is checked in check_config.h. * * We assume that [u]intxx_t exist and that they don't * have padding bits, as the standard requires. */ #define CHECK_PADDING_SIGNED(TYPE, NAME) \ do \ { \ if (sizeof(TYPE) == 2 || sizeof(TYPE) == 4 || \ sizeof(TYPE) == 8) { \ if ((sizeof(TYPE) == 2 && \ (int16_t) NAME ## _MAX != 0x7FFF) || \ (sizeof(TYPE) == 4 && \ (int32_t) NAME ## _MAX != 0x7FFFFFFF) || \ (sizeof(TYPE) == 8 && \ (int64_t) NAME ## _MAX != 0x7FFFFFFFFFFFFFFF)) \ { \ mbedtls_printf("Type '" #TYPE "' has padding bits\n"); \ mbedtls_exit(MBEDTLS_EXIT_FAILURE); \ } \ } else { \ mbedtls_printf("Padding checks only implemented for types of size 2, 4 or 8" \ " - cannot check type '" #TYPE "' of size %" MBEDTLS_PRINTF_SIZET "\n", \ sizeof(TYPE)); \ mbedtls_exit(MBEDTLS_EXIT_FAILURE); \ } \ } while (0) #define CHECK_PADDING_UNSIGNED(TYPE, NAME) \ do \ { \ if ((sizeof(TYPE) == 2 && \ (uint16_t) NAME ## _MAX != 0xFFFF) || \ (sizeof(TYPE) == 4 && \ (uint32_t) NAME ## _MAX != 0xFFFFFFFF) || \ (sizeof(TYPE) == 8 && \ (uint64_t) NAME ## _MAX != 0xFFFFFFFFFFFFFFFF)) \ { \ mbedtls_printf("Type '" #TYPE "' has padding bits\n"); \ mbedtls_exit(MBEDTLS_EXIT_FAILURE); \ } \ } while (0) CHECK_PADDING_SIGNED(short, SHRT); CHECK_PADDING_SIGNED(int, INT); CHECK_PADDING_SIGNED(long, LONG); CHECK_PADDING_SIGNED(long long, LLONG); CHECK_PADDING_SIGNED(ptrdiff_t, PTRDIFF); CHECK_PADDING_UNSIGNED(unsigned short, USHRT); CHECK_PADDING_UNSIGNED(unsigned, UINT); CHECK_PADDING_UNSIGNED(unsigned long, ULONG); CHECK_PADDING_UNSIGNED(unsigned long long, ULLONG); CHECK_PADDING_UNSIGNED(size_t, SIZE); #undef CHECK_PADDING_SIGNED #undef CHECK_PADDING_UNSIGNED /* * Make sure we have a snprintf that correctly zero-terminates */ if (run_test_snprintf() != 0) { mbedtls_printf("the snprintf implementation is broken\n"); mbedtls_exit(MBEDTLS_EXIT_FAILURE); } for (argp = argv + (argc >= 1 ? 1 : argc); *argp != NULL; ++argp) { if (strcmp(*argp, "--quiet") == 0 || strcmp(*argp, "-q") == 0) { v = 0; } else if (strcmp(*argp, "--exclude") == 0 || strcmp(*argp, "-x") == 0) { exclude_mode = 1; } else { break; } } if (v != 0) { mbedtls_printf("\n"); } #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) mbedtls_memory_buffer_alloc_init(buf, sizeof(buf)); #endif if (*argp != NULL && exclude_mode == 0) { /* Run the specified tests */ for (; *argp != NULL; argp++) { for (test = selftests; test->name != NULL; test++) { if (!strcmp(*argp, test->name)) { if (test->function(v) != 0) { suites_failed++; } suites_tested++; break; } } if (test->name == NULL) { mbedtls_printf(" Test suite %s not available -> failed\n\n", *argp); suites_failed++; } } } else { /* Run all the tests except excluded ones */ for (test = selftests; test->name != NULL; test++) { if (exclude_mode) { char **excluded; for (excluded = argp; *excluded != NULL; ++excluded) { if (!strcmp(*excluded, test->name)) { break; } } if (*excluded) { if (v) { mbedtls_printf(" Skip: %s\n", test->name); } continue; } } if (test->function(v) != 0) { suites_failed++; } suites_tested++; } } #else (void) exclude_mode; mbedtls_printf(" MBEDTLS_SELF_TEST not defined.\n"); #endif if (v != 0) { mbedtls_printf(" Executed %d test suites\n\n", suites_tested); if (suites_failed > 0) { mbedtls_printf(" [ %d tests FAIL ]\n\n", suites_failed); } else { mbedtls_printf(" [ All tests PASS ]\n\n"); } } if (suites_failed > 0) { mbedtls_exit(MBEDTLS_EXIT_FAILURE); } mbedtls_exit(MBEDTLS_EXIT_SUCCESS); }