/* * Elliptic curve DSA * * Copyright (C) 2006-2013, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg */ #include "polarssl/config.h" #if defined(POLARSSL_ECDSA_C) #include "polarssl/ecdsa.h" #include "polarssl/asn1write.h" /* * Derive a suitable integer for group grp from a buffer of length len * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 */ static int derive_mpi( const ecp_group *grp, mpi *x, const unsigned char *buf, size_t blen ) { int ret; size_t n_size = (grp->nbits + 7) / 8; size_t use_size = blen > n_size ? n_size : blen; MPI_CHK( mpi_read_binary( x, buf, use_size ) ); if( use_size * 8 > grp->nbits ) MPI_CHK( mpi_shift_r( x, use_size * 8 - grp->nbits ) ); cleanup: return( ret ); } /* * Compute ECDSA signature of a hashed message (SEC1 4.1.3) * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) */ int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s, const mpi *d, const unsigned char *buf, size_t blen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret, key_tries, sign_tries; ecp_point R; mpi k, e; /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ if( grp->N.p == NULL ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); ecp_point_init( &R ); mpi_init( &k ); mpi_init( &e ); sign_tries = 0; do { /* * Steps 1-3: generate a suitable ephemeral keypair * and set r = xR mod n */ key_tries = 0; do { MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) ); MPI_CHK( mpi_mod_mpi( r, &R.X, &grp->N ) ); if( key_tries++ > 10 ) { ret = POLARSSL_ERR_ECP_RANDOM_FAILED; goto cleanup; } } while( mpi_cmp_int( r, 0 ) == 0 ); /* * Step 5: derive MPI from hashed message */ MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); /* * Step 6: compute s = (e + r * d) / k mod n */ MPI_CHK( mpi_mul_mpi( s, r, d ) ); MPI_CHK( mpi_add_mpi( &e, &e, s ) ); MPI_CHK( mpi_inv_mod( s, &k, &grp->N ) ); MPI_CHK( mpi_mul_mpi( s, s, &e ) ); MPI_CHK( mpi_mod_mpi( s, s, &grp->N ) ); if( sign_tries++ > 10 ) { ret = POLARSSL_ERR_ECP_RANDOM_FAILED; goto cleanup; } } while( mpi_cmp_int( s, 0 ) == 0 ); cleanup: ecp_point_free( &R ); mpi_free( &k ); mpi_free( &e ); return( ret ); } /* * Verify ECDSA signature of hashed message (SEC1 4.1.4) * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) */ int ecdsa_verify( ecp_group *grp, const unsigned char *buf, size_t blen, const ecp_point *Q, const mpi *r, const mpi *s) { int ret; mpi e, s_inv, u1, u2; ecp_point R, P; ecp_point_init( &R ); ecp_point_init( &P ); mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 ); /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ if( grp->N.p == NULL ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); /* * Step 1: make sure r and s are in range 1..n-1 */ if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N ) >= 0 || mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N ) >= 0 ) { ret = POLARSSL_ERR_ECP_VERIFY_FAILED; goto cleanup; } /* * Additional precaution: make sure Q is valid */ MPI_CHK( ecp_check_pubkey( grp, Q ) ); /* * Step 3: derive MPI from hashed message */ MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); /* * Step 4: u1 = e / s mod n, u2 = r / s mod n */ MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N ) ); MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) ); MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N ) ); MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) ); MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N ) ); /* * Step 5: R = u1 G + u2 Q * * Since we're not using any secret data, no need to pass a RNG to * ecp_mul() for countermesures. */ MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G, NULL, NULL ) ); MPI_CHK( ecp_mul( grp, &P, &u2, Q, NULL, NULL ) ); MPI_CHK( ecp_add( grp, &R, &R, &P ) ); if( ecp_is_zero( &R ) ) { ret = POLARSSL_ERR_ECP_VERIFY_FAILED; goto cleanup; } /* * Step 6: convert xR to an integer (no-op) * Step 7: reduce xR mod n (gives v) */ MPI_CHK( mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); /* * Step 8: check if v (that is, R.X) is equal to r */ if( mpi_cmp_mpi( &R.X, r ) != 0 ) { ret = POLARSSL_ERR_ECP_VERIFY_FAILED; goto cleanup; } cleanup: ecp_point_free( &R ); ecp_point_free( &P ); mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 ); return( ret ); } /* * RFC 4492 page 20: * * Ecdsa-Sig-Value ::= SEQUENCE { * r INTEGER, * s INTEGER * } * * Size is at most * 1 (tag) + 1 (len) + 1 (initial 0) + ECP_MAX_BYTES for each of r and s, * twice that + 1 (tag) + 2 (len) for the sequence * (assuming ECP_MAX_BYTES is less than 126 for r and s, * and less than 124 (total len <= 255) for the sequence) */ #if POLARSSL_ECP_MAX_BYTES > 124 #error "POLARSSL_ECP_MAX_BYTES bigger than expected, please fix MAX_SIG_LEN" #endif #define MAX_SIG_LEN ( 3 + 2 * ( 2 + POLARSSL_ECP_MAX_BYTES ) ) /* * Compute and write signature */ int ecdsa_write_signature( ecdsa_context *ctx, const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret; unsigned char buf[MAX_SIG_LEN]; unsigned char *p = buf + sizeof( buf ); size_t len = 0; if( ( ret = ecdsa_sign( &ctx->grp, &ctx->r, &ctx->s, &ctx->d, hash, hlen, f_rng, p_rng ) ) != 0 ) { return( ret ); } ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->s ) ); ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->r ) ); ASN1_CHK_ADD( len, asn1_write_len( &p, buf, len ) ); ASN1_CHK_ADD( len, asn1_write_tag( &p, buf, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ); memcpy( sig, p, len ); *slen = len; return( 0 ); } /* * Read and check signature */ int ecdsa_read_signature( ecdsa_context *ctx, const unsigned char *hash, size_t hlen, const unsigned char *sig, size_t slen ) { int ret; unsigned char *p = (unsigned char *) sig; const unsigned char *end = sig + slen; size_t len; if( ( ret = asn1_get_tag( &p, end, &len, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) { return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret ); } if( p + len != end ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + POLARSSL_ERR_ASN1_LENGTH_MISMATCH ); if( ( ret = asn1_get_mpi( &p, end, &ctx->r ) ) != 0 || ( ret = asn1_get_mpi( &p, end, &ctx->s ) ) != 0 ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret ); if( p != end ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + POLARSSL_ERR_ASN1_LENGTH_MISMATCH ); return( ecdsa_verify( &ctx->grp, hash, hlen, &ctx->Q, &ctx->r, &ctx->s ) ); } /* * Generate key pair */ int ecdsa_genkey( ecdsa_context *ctx, ecp_group_id gid, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { return( ecp_use_known_dp( &ctx->grp, gid ) || ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) ); } /* * Set context from an ecp_keypair */ int ecdsa_from_keypair( ecdsa_context *ctx, const ecp_keypair *key ) { int ret; if( ( ret = ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || ( ret = mpi_copy( &ctx->d, &key->d ) ) != 0 || ( ret = ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) { ecdsa_free( ctx ); } return( ret ); } /* * Initialize context */ void ecdsa_init( ecdsa_context *ctx ) { ecp_group_init( &ctx->grp ); mpi_init( &ctx->d ); ecp_point_init( &ctx->Q ); mpi_init( &ctx->r ); mpi_init( &ctx->s ); } /* * Free context */ void ecdsa_free( ecdsa_context *ctx ) { ecp_group_free( &ctx->grp ); mpi_free( &ctx->d ); ecp_point_free( &ctx->Q ); mpi_free( &ctx->r ); mpi_free( &ctx->s ); } #if defined(POLARSSL_SELF_TEST) /* * Checkup routine */ int ecdsa_self_test( int verbose ) { return( verbose++ ); } #endif #endif /* defined(POLARSSL_ECDSA_C) */