/* * HMAC_DRBG implementation (NIST SP 800-90) * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The NIST SP 800-90A DRBGs are described in the following publication. * http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf * References below are based on rev. 1 (January 2012). */ #include "common.h" #if defined(MBEDTLS_HMAC_DRBG_C) #include "mbedtls/hmac_drbg.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #if defined(MBEDTLS_FS_IO) #include #endif #include "mbedtls/platform.h" /* * HMAC_DRBG context initialization */ void mbedtls_hmac_drbg_init(mbedtls_hmac_drbg_context *ctx) { memset(ctx, 0, sizeof(mbedtls_hmac_drbg_context)); ctx->reseed_interval = MBEDTLS_HMAC_DRBG_RESEED_INTERVAL; } /* * HMAC_DRBG update, using optional additional data (10.1.2.2) */ int mbedtls_hmac_drbg_update(mbedtls_hmac_drbg_context *ctx, const unsigned char *additional, size_t add_len) { size_t md_len = mbedtls_md_get_size(ctx->md_ctx.md_info); unsigned char rounds = (additional != NULL && add_len != 0) ? 2 : 1; unsigned char sep[1]; unsigned char K[MBEDTLS_MD_MAX_SIZE]; int ret = MBEDTLS_ERR_MD_BAD_INPUT_DATA; for (sep[0] = 0; sep[0] < rounds; sep[0]++) { /* Step 1 or 4 */ if ((ret = mbedtls_md_hmac_reset(&ctx->md_ctx)) != 0) { goto exit; } if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx, ctx->V, md_len)) != 0) { goto exit; } if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx, sep, 1)) != 0) { goto exit; } if (rounds == 2) { if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx, additional, add_len)) != 0) { goto exit; } } if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, K)) != 0) { goto exit; } /* Step 2 or 5 */ if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, K, md_len)) != 0) { goto exit; } if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx, ctx->V, md_len)) != 0) { goto exit; } if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, ctx->V)) != 0) { goto exit; } } exit: mbedtls_platform_zeroize(K, sizeof(K)); return ret; } /* * Simplified HMAC_DRBG initialisation (for use with deterministic ECDSA) */ int mbedtls_hmac_drbg_seed_buf(mbedtls_hmac_drbg_context *ctx, const mbedtls_md_info_t *md_info, const unsigned char *data, size_t data_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if ((ret = mbedtls_md_setup(&ctx->md_ctx, md_info, 1)) != 0) { return ret; } #if defined(MBEDTLS_THREADING_C) mbedtls_mutex_init(&ctx->mutex); #endif /* * Set initial working state. * Use the V memory location, which is currently all 0, to initialize the * MD context with an all-zero key. Then set V to its initial value. */ if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, ctx->V, mbedtls_md_get_size(md_info))) != 0) { return ret; } memset(ctx->V, 0x01, mbedtls_md_get_size(md_info)); if ((ret = mbedtls_hmac_drbg_update(ctx, data, data_len)) != 0) { return ret; } return 0; } /* * Internal function used both for seeding and reseeding the DRBG. * Comments starting with arabic numbers refer to section 10.1.2.4 * of SP800-90A, while roman numbers refer to section 9.2. */ static int hmac_drbg_reseed_core(mbedtls_hmac_drbg_context *ctx, const unsigned char *additional, size_t len, int use_nonce) { unsigned char seed[MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT]; size_t seedlen = 0; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; { size_t total_entropy_len; if (use_nonce == 0) { total_entropy_len = ctx->entropy_len; } else { total_entropy_len = ctx->entropy_len * 3 / 2; } /* III. Check input length */ if (len > MBEDTLS_HMAC_DRBG_MAX_INPUT || total_entropy_len + len > MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT) { return MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG; } } memset(seed, 0, MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT); /* IV. Gather entropy_len bytes of entropy for the seed */ if ((ret = ctx->f_entropy(ctx->p_entropy, seed, ctx->entropy_len)) != 0) { return MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED; } seedlen += ctx->entropy_len; /* For initial seeding, allow adding of nonce generated * from the entropy source. See Sect 8.6.7 in SP800-90A. */ if (use_nonce) { /* Note: We don't merge the two calls to f_entropy() in order * to avoid requesting too much entropy from f_entropy() * at once. Specifically, if the underlying digest is not * SHA-1, 3 / 2 * entropy_len is at least 36 Bytes, which * is larger than the maximum of 32 Bytes that our own * entropy source implementation can emit in a single * call in configurations disabling SHA-512. */ if ((ret = ctx->f_entropy(ctx->p_entropy, seed + seedlen, ctx->entropy_len / 2)) != 0) { return MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED; } seedlen += ctx->entropy_len / 2; } /* 1. Concatenate entropy and additional data if any */ if (additional != NULL && len != 0) { memcpy(seed + seedlen, additional, len); seedlen += len; } /* 2. Update state */ if ((ret = mbedtls_hmac_drbg_update(ctx, seed, seedlen)) != 0) { goto exit; } /* 3. Reset reseed_counter */ ctx->reseed_counter = 1; exit: /* 4. Done */ mbedtls_platform_zeroize(seed, seedlen); return ret; } /* * HMAC_DRBG reseeding: 10.1.2.4 + 9.2 */ int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx, const unsigned char *additional, size_t len) { return hmac_drbg_reseed_core(ctx, additional, len, 0); } /* * HMAC_DRBG initialisation (10.1.2.3 + 9.1) * * The nonce is not passed as a separate parameter but extracted * from the entropy source as suggested in 8.6.7. */ int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context *ctx, const mbedtls_md_info_t *md_info, int (*f_entropy)(void *, unsigned char *, size_t), void *p_entropy, const unsigned char *custom, size_t len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t md_size; if ((ret = mbedtls_md_setup(&ctx->md_ctx, md_info, 1)) != 0) { return ret; } /* The mutex is initialized iff the md context is set up. */ #if defined(MBEDTLS_THREADING_C) mbedtls_mutex_init(&ctx->mutex); #endif md_size = mbedtls_md_get_size(md_info); /* * Set initial working state. * Use the V memory location, which is currently all 0, to initialize the * MD context with an all-zero key. Then set V to its initial value. */ if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, ctx->V, md_size)) != 0) { return ret; } memset(ctx->V, 0x01, md_size); ctx->f_entropy = f_entropy; ctx->p_entropy = p_entropy; if (ctx->entropy_len == 0) { /* * See SP800-57 5.6.1 (p. 65-66) for the security strength provided by * each hash function, then according to SP800-90A rev1 10.1 table 2, * min_entropy_len (in bits) is security_strength. * * (This also matches the sizes used in the NIST test vectors.) */ ctx->entropy_len = md_size <= 20 ? 16 : /* 160-bits hash -> 128 bits */ md_size <= 28 ? 24 : /* 224-bits hash -> 192 bits */ 32; /* better (256+) -> 256 bits */ } if ((ret = hmac_drbg_reseed_core(ctx, custom, len, 1 /* add nonce */)) != 0) { return ret; } return 0; } /* * Set prediction resistance */ void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_context *ctx, int resistance) { ctx->prediction_resistance = resistance; } /* * Set entropy length grabbed for seeding */ void mbedtls_hmac_drbg_set_entropy_len(mbedtls_hmac_drbg_context *ctx, size_t len) { ctx->entropy_len = len; } /* * Set reseed interval */ void mbedtls_hmac_drbg_set_reseed_interval(mbedtls_hmac_drbg_context *ctx, int interval) { ctx->reseed_interval = interval; } /* * HMAC_DRBG random function with optional additional data: * 10.1.2.5 (arabic) + 9.3 (Roman) */ int mbedtls_hmac_drbg_random_with_add(void *p_rng, unsigned char *output, size_t out_len, const unsigned char *additional, size_t add_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_hmac_drbg_context *ctx = (mbedtls_hmac_drbg_context *) p_rng; size_t md_len = mbedtls_md_get_size(ctx->md_ctx.md_info); size_t left = out_len; unsigned char *out = output; /* II. Check request length */ if (out_len > MBEDTLS_HMAC_DRBG_MAX_REQUEST) { return MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG; } /* III. Check input length */ if (add_len > MBEDTLS_HMAC_DRBG_MAX_INPUT) { return MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG; } /* 1. (aka VII and IX) Check reseed counter and PR */ if (ctx->f_entropy != NULL && /* For no-reseeding instances */ (ctx->prediction_resistance == MBEDTLS_HMAC_DRBG_PR_ON || ctx->reseed_counter > ctx->reseed_interval)) { if ((ret = mbedtls_hmac_drbg_reseed(ctx, additional, add_len)) != 0) { return ret; } add_len = 0; /* VII.4 */ } /* 2. Use additional data if any */ if (additional != NULL && add_len != 0) { if ((ret = mbedtls_hmac_drbg_update(ctx, additional, add_len)) != 0) { goto exit; } } /* 3, 4, 5. Generate bytes */ while (left != 0) { size_t use_len = left > md_len ? md_len : left; if ((ret = mbedtls_md_hmac_reset(&ctx->md_ctx)) != 0) { goto exit; } if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx, ctx->V, md_len)) != 0) { goto exit; } if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, ctx->V)) != 0) { goto exit; } memcpy(out, ctx->V, use_len); out += use_len; left -= use_len; } /* 6. Update */ if ((ret = mbedtls_hmac_drbg_update(ctx, additional, add_len)) != 0) { goto exit; } /* 7. Update reseed counter */ ctx->reseed_counter++; exit: /* 8. Done */ return ret; } /* * HMAC_DRBG random function */ int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_hmac_drbg_context *ctx = (mbedtls_hmac_drbg_context *) p_rng; #if defined(MBEDTLS_THREADING_C) if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) { return ret; } #endif ret = mbedtls_hmac_drbg_random_with_add(ctx, output, out_len, NULL, 0); #if defined(MBEDTLS_THREADING_C) if (mbedtls_mutex_unlock(&ctx->mutex) != 0) { return MBEDTLS_ERR_THREADING_MUTEX_ERROR; } #endif return ret; } /* * This function resets HMAC_DRBG context to the state immediately * after initial call of mbedtls_hmac_drbg_init(). */ void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx) { if (ctx == NULL) { return; } #if defined(MBEDTLS_THREADING_C) /* The mutex is initialized iff the md context is set up. */ if (ctx->md_ctx.md_info != NULL) { mbedtls_mutex_free(&ctx->mutex); } #endif mbedtls_md_free(&ctx->md_ctx); mbedtls_platform_zeroize(ctx, sizeof(mbedtls_hmac_drbg_context)); ctx->reseed_interval = MBEDTLS_HMAC_DRBG_RESEED_INTERVAL; } #if defined(MBEDTLS_FS_IO) int mbedtls_hmac_drbg_write_seed_file(mbedtls_hmac_drbg_context *ctx, const char *path) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; FILE *f; unsigned char buf[MBEDTLS_HMAC_DRBG_MAX_INPUT]; if ((f = fopen(path, "wb")) == NULL) { return MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR; } /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */ mbedtls_setbuf(f, NULL); if ((ret = mbedtls_hmac_drbg_random(ctx, buf, sizeof(buf))) != 0) { goto exit; } if (fwrite(buf, 1, sizeof(buf), f) != sizeof(buf)) { ret = MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR; goto exit; } ret = 0; exit: fclose(f); mbedtls_platform_zeroize(buf, sizeof(buf)); return ret; } int mbedtls_hmac_drbg_update_seed_file(mbedtls_hmac_drbg_context *ctx, const char *path) { int ret = 0; FILE *f = NULL; size_t n; unsigned char buf[MBEDTLS_HMAC_DRBG_MAX_INPUT]; unsigned char c; if ((f = fopen(path, "rb")) == NULL) { return MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR; } /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */ mbedtls_setbuf(f, NULL); n = fread(buf, 1, sizeof(buf), f); if (fread(&c, 1, 1, f) != 0) { ret = MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG; goto exit; } if (n == 0 || ferror(f)) { ret = MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR; goto exit; } fclose(f); f = NULL; ret = mbedtls_hmac_drbg_update(ctx, buf, n); exit: mbedtls_platform_zeroize(buf, sizeof(buf)); if (f != NULL) { fclose(f); } if (ret != 0) { return ret; } return mbedtls_hmac_drbg_write_seed_file(ctx, path); } #endif /* MBEDTLS_FS_IO */ #if defined(MBEDTLS_SELF_TEST) #if !defined(MBEDTLS_MD_CAN_SHA1) /* Dummy checkup routine */ int mbedtls_hmac_drbg_self_test(int verbose) { (void) verbose; return 0; } #else #define OUTPUT_LEN 80 /* From a NIST PR=true test vector */ static const unsigned char entropy_pr[] = { 0xa0, 0xc9, 0xab, 0x58, 0xf1, 0xe2, 0xe5, 0xa4, 0xde, 0x3e, 0xbd, 0x4f, 0xf7, 0x3e, 0x9c, 0x5b, 0x64, 0xef, 0xd8, 0xca, 0x02, 0x8c, 0xf8, 0x11, 0x48, 0xa5, 0x84, 0xfe, 0x69, 0xab, 0x5a, 0xee, 0x42, 0xaa, 0x4d, 0x42, 0x17, 0x60, 0x99, 0xd4, 0x5e, 0x13, 0x97, 0xdc, 0x40, 0x4d, 0x86, 0xa3, 0x7b, 0xf5, 0x59, 0x54, 0x75, 0x69, 0x51, 0xe4 }; static const unsigned char result_pr[OUTPUT_LEN] = { 0x9a, 0x00, 0xa2, 0xd0, 0x0e, 0xd5, 0x9b, 0xfe, 0x31, 0xec, 0xb1, 0x39, 0x9b, 0x60, 0x81, 0x48, 0xd1, 0x96, 0x9d, 0x25, 0x0d, 0x3c, 0x1e, 0x94, 0x10, 0x10, 0x98, 0x12, 0x93, 0x25, 0xca, 0xb8, 0xfc, 0xcc, 0x2d, 0x54, 0x73, 0x19, 0x70, 0xc0, 0x10, 0x7a, 0xa4, 0x89, 0x25, 0x19, 0x95, 0x5e, 0x4b, 0xc6, 0x00, 0x1d, 0x7f, 0x4e, 0x6a, 0x2b, 0xf8, 0xa3, 0x01, 0xab, 0x46, 0x05, 0x5c, 0x09, 0xa6, 0x71, 0x88, 0xf1, 0xa7, 0x40, 0xee, 0xf3, 0xe1, 0x5c, 0x02, 0x9b, 0x44, 0xaf, 0x03, 0x44 }; /* From a NIST PR=false test vector */ static const unsigned char entropy_nopr[] = { 0x79, 0x34, 0x9b, 0xbf, 0x7c, 0xdd, 0xa5, 0x79, 0x95, 0x57, 0x86, 0x66, 0x21, 0xc9, 0x13, 0x83, 0x11, 0x46, 0x73, 0x3a, 0xbf, 0x8c, 0x35, 0xc8, 0xc7, 0x21, 0x5b, 0x5b, 0x96, 0xc4, 0x8e, 0x9b, 0x33, 0x8c, 0x74, 0xe3, 0xe9, 0x9d, 0xfe, 0xdf }; static const unsigned char result_nopr[OUTPUT_LEN] = { 0xc6, 0xa1, 0x6a, 0xb8, 0xd4, 0x20, 0x70, 0x6f, 0x0f, 0x34, 0xab, 0x7f, 0xec, 0x5a, 0xdc, 0xa9, 0xd8, 0xca, 0x3a, 0x13, 0x3e, 0x15, 0x9c, 0xa6, 0xac, 0x43, 0xc6, 0xf8, 0xa2, 0xbe, 0x22, 0x83, 0x4a, 0x4c, 0x0a, 0x0a, 0xff, 0xb1, 0x0d, 0x71, 0x94, 0xf1, 0xc1, 0xa5, 0xcf, 0x73, 0x22, 0xec, 0x1a, 0xe0, 0x96, 0x4e, 0xd4, 0xbf, 0x12, 0x27, 0x46, 0xe0, 0x87, 0xfd, 0xb5, 0xb3, 0xe9, 0x1b, 0x34, 0x93, 0xd5, 0xbb, 0x98, 0xfa, 0xed, 0x49, 0xe8, 0x5f, 0x13, 0x0f, 0xc8, 0xa4, 0x59, 0xb7 }; /* "Entropy" from buffer */ static size_t test_offset; static int hmac_drbg_self_test_entropy(void *data, unsigned char *buf, size_t len) { const unsigned char *p = data; memcpy(buf, p + test_offset, len); test_offset += len; return 0; } #define CHK(c) if ((c) != 0) \ { \ if (verbose != 0) \ mbedtls_printf("failed\n"); \ return 1; \ } /* * Checkup routine for HMAC_DRBG with SHA-1 */ int mbedtls_hmac_drbg_self_test(int verbose) { mbedtls_hmac_drbg_context ctx; unsigned char buf[OUTPUT_LEN]; const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1); mbedtls_hmac_drbg_init(&ctx); /* * PR = True */ if (verbose != 0) { mbedtls_printf(" HMAC_DRBG (PR = True) : "); } test_offset = 0; CHK(mbedtls_hmac_drbg_seed(&ctx, md_info, hmac_drbg_self_test_entropy, (void *) entropy_pr, NULL, 0)); mbedtls_hmac_drbg_set_prediction_resistance(&ctx, MBEDTLS_HMAC_DRBG_PR_ON); CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN)); CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN)); CHK(memcmp(buf, result_pr, OUTPUT_LEN)); mbedtls_hmac_drbg_free(&ctx); mbedtls_hmac_drbg_free(&ctx); if (verbose != 0) { mbedtls_printf("passed\n"); } /* * PR = False */ if (verbose != 0) { mbedtls_printf(" HMAC_DRBG (PR = False) : "); } mbedtls_hmac_drbg_init(&ctx); test_offset = 0; CHK(mbedtls_hmac_drbg_seed(&ctx, md_info, hmac_drbg_self_test_entropy, (void *) entropy_nopr, NULL, 0)); CHK(mbedtls_hmac_drbg_reseed(&ctx, NULL, 0)); CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN)); CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN)); CHK(memcmp(buf, result_nopr, OUTPUT_LEN)); mbedtls_hmac_drbg_free(&ctx); mbedtls_hmac_drbg_free(&ctx); if (verbose != 0) { mbedtls_printf("passed\n"); } if (verbose != 0) { mbedtls_printf("\n"); } return 0; } #endif /* MBEDTLS_MD_CAN_SHA1 */ #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_HMAC_DRBG_C */