Some calls to psa_cipher_finish or psa_cipher_update append to a
buffer. Several of these calls were not calculating the offset into
the buffer or the remaining buffer size correctly.
This did not lead to buffer overflows before because the buffer sizes
were sufficiently large for our test inputs. This did not lead to
incorrect output when the test was designed to append but actually
wrote too early because all the existing test cases either have no
output from finish (stream cipher) or have no output from update (CBC,
with less than one block of input).
Check generator validity (i.e. that alg has been initialized) before
allowing reads from the generator or allowing reads of the generator's
capacity.
This aligns our implementation with the documented error code behavior
in our crypto.h and the PSA Crypto API.
Test that freshly-initialized contexts exhibit default behavior through
the API. Do this without depending on the internal representation of the
contexts. This provides better portability of our tests on compilers
like MSVC.
For must-fail asymmetric decryption tests, add an output size parameter
so that tests can directly control what output buffer size they allocate
and use independently from the key size used. This enables better
testing of behavior with various output buffer sizes.
When RSA decrypting, unlike with RSA encrypting, we sometimes expect the
output length will be less than the key size. For instance, in the case
where the plaintext is zero-length we expect the output length of the
decryption to be zero-length as well, not key size in length.
For must-fail tests, we don't expect output-buffer-sized RSA-decryption,
only that the output length is less than or equal to the output size, so
these tests remain unchanged.
Change the must-pass tests to expect that the actual output size is
equal to the expected length of the output buffer instead of always
being the key size.
In one place, exercise_key was used in a such a way that if the test
failed inside exercise_key, the test suite would correctly report the
test as failed but would not report the exact location of the failure.
Fix this.
Add documentation for exercise_key that explains how to use it.
Split the testing into tests that exercise policies in
test_suite_psa_crypto and tests that exercise slot content (slot
states, key material) in test_suite_psa_crypto_slot_management.
Test various cases of source and target policies with and without
wildcards. Missing: testing of the policy constraint on psa_copy_key
itself.
Test several key types (raw data, AES, RSA). Test with the
source or target being persistent.
Add failure tests (incompatible policies, source slot empty, target
slot occupied).
Remove front matter from our EC key format, to make it just the contents
of an ECPoint as defined by SEC1 section 2.3.3.
As a consequence of the simplification, remove the restriction on not
being able to use an ECDH key with ECDSA. There is no longer any OID
specified when importing a key, so we can't reject importing of an ECDH
key for the purpose of ECDSA based on the OID.
Remove pkcs-1 and rsaEncryption front matter from RSA public keys. Move
code that was shared between RSA and other key types (like EC keys) to
be used only with non-RSA keys.
Remove the type and bits arguments to psa_allocate_key() and
psa_create_key(). They can be useful if the implementation wants to
know exactly how much space to allocate for the slot, but many
implementations (including ours) don't care, and it's possible to work
around their lack by deferring size-dependent actions to the time when
the key material is created. They are a burden to applications and
make the API more complex, and the benefits aren't worth it.
Change the API and adapt the implementation, the units test and the
sample code accordingly.
Change the key derivation API to take inputs in multiple steps,
instead of a single one-site-fits-poorly function.
Conflicts:
* include/psa/crypto.h: merge independent changes in the documentation
of psa_key_agreement (public_key from the work on public key formats
vs general description and other parameters in the work on key derivation).
* tests/suites/test_suite_psa_crypto.data: update the key agreement
tests from the work on key derivation to the format from the work on
public key formats.
* tests/suites/test_suite_psa_crypto_metadata.function: reconcile the
addition of unrelated ALG_IS_xxx macros
Remove front matter from our EC key format, to make it just the contents
of an ECPoint as defined by SEC1 section 2.3.3.
As a consequence of the simplification, remove the restriction on not
being able to use an ECDH key with ECDSA. There is no longer any OID
specified when importing a key, so we can't reject importing of an ECDH
key for the purpose of ECDSA based on the OID.
You can use PSA_ALG_ANY_HASH to build the algorithm value for a
hash-and-sign algorithm in a policy. Then the policy allows usage with
this hash-and-sign family with any hash.
Test that PSA_ALG_ANY_HASH-based policies allow a specific hash, but
not a different hash-and-sign family. Test that PSA_ALG_ANY_HASH is
not valid for operations, only in policies.
Remove pkcs-1 and rsaEncryption front matter from RSA public keys. Move
code that was shared between RSA and other key types (like EC keys) to
be used only with non-RSA keys.
Add new initializers for cipher operation objects and use them in our
tests and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for MAC operation objects and use them in our tests
and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for hash operation objects and use them in our
tests and library code. Prefer using the macro initializers due to their
straightforwardness.
Add new initializers for key policies and use them in our docs, example
programs, tests, and library code. Prefer using the macro initializers
due to their straightforwardness.
Change the way some lines are wrapped to cut at a more logical place.
This commit mainly rewrites multi-line calls to TEST_EQUAL, and also a
few calls to PSA_ASSERT.
This commit is the result of the following command, followed by
reindenting (but not wrapping lines):
perl -00 -i -pe 's/^( *)TEST_ASSERT\(([^;=]*)(?: |\n *)==([^;=]*)\);$/${1}TEST_EQUAL($2,$3);/gm' tests/suites/test_suite_psa_*.function
This commit is the result of the following command, followed by
reindenting (but not wrapping lines):
perl -00 -i -pe 's/^( *)TEST_ASSERT\(([^;=]*)(?: |\n *)==\s*PSA_SUCCESS\s*\);$/${1}PSA_ASSERT($2 );/gm' tests/suites/test_suite_psa_*.function
Switch from the direct use of slot numbers to handles allocated by
psa_allocate_key.
This commit does not affect persistent key tests except for the one
test function in test_suite_psa_crypto that uses persistent keys
(persistent_key_load_key_from_storage).
The general principle for each function is:
* Change `psa_key_slot_t slot` to `psa_key_handle_t handle`.
* Call psa_allocate_key() before setting the policy of the slot,
or before creating key material in functions that don't set a policy.
* Some PSA_ERROR_EMPTY_SLOT errors become PSA_ERROR_INVALID_HANDLE
because there is now a distinction between not having a valid
handle, and having a valid handle to a slot that doesn't contain key
material.
* In tests that use symmetric keys, calculate the max_bits parameters
of psa_allocate_key() from the key data size. In tests where the key
may be asymmetric, call an auxiliary macro KEY_BITS_FROM_DATA which
returns an overapproximation. There's no good way to find a good
value for max_bits with the API, I think the API should be tweaked.
Allow use of persistent keys, including configuring them, importing and
exporting them, and destroying them.
When getting a slot using psa_get_key_slot, there are 3 scenarios that
can occur if the keys lifetime is persistent:
1. Key type is PSA_KEY_TYPE_NONE, no persistent storage entry:
- The key slot is treated as a standard empty key slot
2. Key type is PSA_KEY_TYPE_NONE, persistent storage entry exists:
- Attempt to load the key from persistent storage
3. Key type is not PSA_KEY_TYPE_NONE:
- As checking persistent storage on every use of the key could
be expensive, the persistent key is assumed to be saved in
persistent storage, the in-memory key is continued to be used.
Add test cases that do key agreement with raw selection in pieces, to
validate that selection works even when the application doesn't read
everything in one chunk.
We had only allocated 40 bytes for printing into, but we wanted to print 46
bytes. Update the buffer to be 47 bytes, which is large enough to hold what
we want to print plus a terminating null byte.
1. New test for testing bad order of hash function calls.
2. Removed test hash_update_bad_paths since it's test scenario
was moved to the new test.
3. Moved some scenarios from test hash_verify_bad_paths to
the new test.
1. Rename hash_bad_paths to hash_verify_bad_paths
2. Add test hash_update_bad_paths
3. Add test hash_finish_bad_paths
The different scenarios tested as part of hash_bad_paths are
moved to the relevant test.
streamline the API for the test test_derive_invalid_generator_state: by removing
the key_data parameter.
This parameter is not important for test flow and can be hard-coded.
In preparation for the import/export format change for private
elliptic curve keys from RFC 5915 to the raw secret value,
remove ASN.1-based sanity checks. For the raw secret value, most byte
strings of the correct length are valid (the details depend on the
curve), so as a sanity check, just check the length.
In the test function for export_public_key, don't just check the
length of the result. Compare the actual result to the expected
result.
Take an extra argument that allows using an export buffer that's
larger or smaller than needed. Zero is the size given by
PSA_KEY_EXPORT_MAX_SIZE.
Don't check the output of psa_get_key_information. That's useful in
import_export because it tests both import and export, but not in
import_export_public_key whose goal is only to test public key export.
This commit adjusts the existing test data but does not add new test
cases.
Key derivation test now uses an indirect way to test generator validity
as the direct way previously used isn't compatible with the PSA IPC
implementation. Additional bad path test for the generator added
to check basic bad-path scenarios.
Add comments noting that the maximum length of a MAC must fit in
PSA_ALG_MAC_TRUNCATION_MASK. Add a unit test that verifies that the
maximum MAC size fits.
Pass the nonce first, then the AD, then the input. This is the order
in which the data is processed and it's the order of the parameters to
the API functions.
This commit fixes some missing size comparison. In
aead_encrypt_decrypt, aead_encrypt and aead_decrypt, the test code
would not have noticed if the library function had reported an output
length that was not the expected length.
This commit resolves a bug whereby some test cases failed on systems
where mbedtls_calloc returns NULL when the size of 0, because the test
case asserted `pointer != NULL` regardless of the size.
Don't rely on static initialization of a flexible array member, that's
a GNU extension. The previous code also triggered a Clang warning
"suggest braces around initialization of subobject" (-Wmissing-braces)
for `struct {char a[]} = {"foo"}`.
This is not useful to validate the implementation when importing
canonical input, which is the case for most import/export test cases,
but it helps validate the sanity checks themselves.
Implement sanity checks of exported public keys, using ASN.1 parsing.
Rewrite the sanity checks of key pairs using ASN.1 parsing, so as to
check more things with simpler code.
Move the code to perform sanity checks on the exported key from
generate_key to exercise_key. This way the sanity checks can be
performed after importing or deriving a key as well.
In addition to checking the exported key if its usage allows it, check
the exported public key if the key is asymmetric.
The last slot in the array was not freed due to an off-by-one error.
Amend the fill_slots test to serve as a non-regression test for this
issue: without this bug fix, it would cause a memory leak.
In psa_generator_hkdf_read, return BAD_STATE if we're trying to
construct more output than the algorithm allows. This can't happen
through the API due to the capacity limit, but it could potentially
happen in an internal call.
Also add a test case that verifies that we can set up HKDF with its
maximum capacity and read up to the maximum capacity.
New key type PSA_KEY_TYPE_DERIVE. New usage flag PSA_KEY_USAGE_DERIVE.
New function psa_key_derivation.
No key derivation algorithm is implemented yet. The code may not
compile with -Wunused.
Write some unit test code for psa_key_derivation. Most of it cannot be
used yet due to the lack of a key derivation algorithm.
In asymmetric_encrypt_decrypt, use the buffer size advertized by the
library for the ciphertext, and the length of the plaintext for the
re-decrypted output.
Test the output length if known. Require it to be 0 on error for
encrypt/decrypt functions. If the output length is unknown, test at
least that it's within the buffer limits.
Add a label argument to all asymmetric encryption test functions
(currently empty in all tests, but that will change soon).
In asymmetric_encrypt and asymmetric_decrypt, with an empty label,
test with both a null pointer and a non-null pointer.
This required tweaking exercise_signature_key to use a payload size
for the signature based on the algorithm, since our implementation of
PSS requires that the input size matches the hash size. This would
also be the case for PKCS#1 v1.5 with a specified hash.
Make function names for multipart operations more consistent (cipher
edition).
Rename symmetric cipher multipart operation functions so that they all
start with psa_cipher_:
* psa_encrypt_setup -> psa_cipher_encrypt_setup
* psa_decrypt_setup -> psa_cipher_decrypt_setup
* psa_encrypt_set_iv -> psa_cipher_set_iv
* psa_encrypt_generate_iv -> psa_cipher_generate_iv
Revise the test function asymmetric_encrypt_fail into
asymmetric_encrypt and use it for positive tests as well. Get the
expected output length from PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE. Check
the actual output length against test data.
Add positive test cases for encryption: one with an RSA public
key (this is the only test for encryption with a public key rather
than a key pair) and one with a key pair.
Make function names for multipart operations more consistent (MAC
setup edition).
Split psa_mac_setup into two functions psa_mac_sign_setup and
psa_mac_verify_setup. These functions behave identically except that
they require different usage flags on the key. The goal of the split
is to enforce the key policy during setup rather than at the end of
the operation (which was a bit of a hack).
In psa_mac_sign_finish and psa_mac_verify_finish, if the operation is
of the wrong type, abort the operation before returning BAD_STATE.
No common signature algorithm uses a salt (RSA-PKCS#1v1.5, RSA-PSS,
DSA, ECDSA, EdDSA). We don't even take an IV for MAC whereas MAC
algorithms with IV are uncommon but heard of. So remove the salt
parameter from psa_asymmetric_sign and psa_asymmetric_verify.
Add tests of key policy checks for MAC, cipher, AEAD, asymmetric
encryption and asymmetric signature. For each category, test
with/without the requisite usage flag in each direction, and test
algorithm mismatch.
At this point it fixes memory leaks as well. These memory leaks are the
fault of the 'psa_cipher_finish()' function and the calls fixed in this
commit (among with many others in the test suite) will become obsolete
after fixing 'psa_cipher_finish()'.
Add required includes in tests and psa_crypto.c file in order to be able to compilef for the SPM solution.
Some functions needed to be deprecated from psa_crypto.c since they already implemented in the SPM.
Use PSA_BLOCK_CIPHER_BLOCK_SIZE() macro to get the cipher block size instead of accessing the operation struct
additionally, for SPM case, the 'block_size' member is not a member in the operation struct
In tests that had a hard-coded buffer size, use PSA_MAC_MAX_SIZE or
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE as appropriate.
Test that PSA_xxx_MAX_SIZE is larger than the size used in tests that
expect a specific output.
Make psa_export_key() always set a valid data_length when exporting,
even when there are errors. This makes the API easier to use for buggy
programs (like our test code).
Our test code previously used exported_length uninitialized when
checking to see that the buffer returned was all zero in import_export()
in the case where an error was returned from psa_export_key().
Initialize exported_length to an invalid length, and check that it gets
set properly by psa_export_key(), to avoid this using export_length
uninitialized. Note that the mem_is_zero() check is still valid when
psa_export_key() returns an error, e.g. where exported_length is 0, as
we want to check that nothing was written to the buffer on error.
Out test code also previous passed NULL for the data_length parameter of
psa_export_key() when it expected a failure (in key_policy_fail()).
However, data_length is not allowed to be NULL, especially now that we
write to data_length from psa_export_key() even when there are errors.
Update the test code to not pass in a NULL data_length.
It isn't used to define other macros and it doesn't seem that useful
for users. Remove it, we can reintroduce it if needed.
Define a similar function key_type_is_raw_bytes in the implementation
with a clear semantics: it's a key that's represented as a struct
raw_data.
In the test generate_random, focus on testing that psa_generate_random
is writing all the bytes of the output buffer and no more. Add a check
that it is writing to each byte of the output buffer. Do not try to
look for repeating output as the structure of a unit test isn't likely
to catch that sort of problem anyway.
Also add what was missing in the test suite to support block ciphers
with a block size that isn't 16.
Fix some buggy test data that passed only due to problems with DES
support in the product.
When psa_mac_start(), psa_encrypt_setup() or psa_cipher_setup()
failed, depending on when the failure happened, it was possible that
psa_mac_abort() or psa_cipher_abort() would crash because it would try
to call a free() function uninitialized data in the operation
structure. Refactor the functions so that they initialize the
operation structure before doing anything else.
Add non-regression tests and a few more positive and negative unit
tests for psa_mac_start() and psa_cipher_setup() (the latter via
psa_encrypt_setip()).
In psa_export_key, ensure that each byte of the output buffer either
contains its original value, is zero, or is part of the actual output.
Specifically, don't risk having partial output on error, and don't
leave extra data at the end of the buffer when exporting an asymmetric
key.
Test that exporting to a previously zeroed buffer leaves the buffer
zeroed outside the actual output if any.
* init-deinit
* import-export
* policies
* lifetime
* hash
* MAC
* cipher
* AEAD
* asymmetric sign
* asymmetric verify
* asymmetric encrypt-decrypt
This commit only moves test functions and test cases around. It does
not modify, add or remove tests.
Get rid of many redundant casts. In particular, it is not useful to
cast uint32_t values to size_t before performing arithmetic or
comparisons on them.
Rewrap a number of function calls, many of which now have narrower
arguments thanks to the removed casts. When a function call doesn't
fit on a single line, avoid grouping unrelated parameters together,
but do try to group a buffer pointer and the associated size.
Define more auxiliary variables xxx of a particular integer
type (psa_algorithm_t, psa_key_usage_t, etc.) corresponding to a test
function xxx_arg which has the type int. This avoids the need to cast
xxx_arg to an unsigned type sometimes in the code.
Avoid lines longer than 80 columns.
Remove some redundant parentheses, e.g. change
if( ( a == b ) && ( c == d ) )
to
if( a == b && c == d )
which makes lines less long and makes the remaining parentheses more
relevant.
Add missing parentheses around return statements.
There should be no semantic change in this commit.
Always adding things at the end tends to create merge conflicts.
Adding in the middle in this way makes the order more logical in
addition to avoiding conflicts.
In cipher_test_verify_output_multpart, tweak the ways chunk sizes are
added in order to get rid of the variable temp. In other functions,
this commit does not change the logic at all.
Only whitespace changes.
* Remove tabs.
* Remove trailing whitespace.
* Correct some misindented lines.
* Normalize whitespace around some punctuation.
* Split some lines to avoid going over 80 columns.
cipher_test_positive was never compiled due to a syntax error in the
BEGIN_CASE magic comment. It has now been duplicated as
cipher_test_encrypt. Remove the copy that was never compiled.
Conflicts:
library/psa_crypto.c
tests/suites/test_suite_psa_crypto.data
tests/suites/test_suite_psa_crypto.function
All the conflicts are concurrent additions where the order doesn't
matter. I put the code from feature-psa (key policy) before the code
from PR #13 (key lifetime).
New header file crypto_struct.h. The main file crypto.sh declares
structures which are implementation-defined. These structures must be
defined in crypto_struct.h, which is included at the end so that the
structures can use types defined in crypto.h.
Implement psa_hash_start, psa_hash_update and psa_hash_final. This
should work for all hash algorithms supported by Mbed TLS, but has
only been smoke-tested for SHA-256, and only in the nominal case.
Define psa_key_type_t and a first stab at a few values.
New functions psa_import_key, psa_export_key, psa_destroy_key,
psa_get_key_information. Implement them for raw data and RSA.
Under the hood, create an in-memory, fixed-size keystore with room
for MBEDTLS_PSA_KEY_SLOT_COUNT - 1 keys.
New module psa_crypto.c (MBEDTLS_PSA_CRYPTO_C):
Platform Security Architecture compatibility layer on top of
libmedcrypto.
Implement psa_crypto_init function which sets up a RNG.
Add a mbedtls_psa_crypto_free function which deinitializes the
library.
Define a first batch of error codes.