This required tweaking exercise_signature_key to use a payload size
for the signature based on the algorithm, since our implementation of
PSS requires that the input size matches the hash size. This would
also be the case for PKCS#1 v1.5 with a specified hash.
Make function names for multipart operations more consistent (cipher
edition).
Rename symmetric cipher multipart operation functions so that they all
start with psa_cipher_:
* psa_encrypt_setup -> psa_cipher_encrypt_setup
* psa_decrypt_setup -> psa_cipher_decrypt_setup
* psa_encrypt_set_iv -> psa_cipher_set_iv
* psa_encrypt_generate_iv -> psa_cipher_generate_iv
Revise the test function asymmetric_encrypt_fail into
asymmetric_encrypt and use it for positive tests as well. Get the
expected output length from PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE. Check
the actual output length against test data.
Add positive test cases for encryption: one with an RSA public
key (this is the only test for encryption with a public key rather
than a key pair) and one with a key pair.
Make function names for multipart operations more consistent (MAC
setup edition).
Split psa_mac_setup into two functions psa_mac_sign_setup and
psa_mac_verify_setup. These functions behave identically except that
they require different usage flags on the key. The goal of the split
is to enforce the key policy during setup rather than at the end of
the operation (which was a bit of a hack).
In psa_mac_sign_finish and psa_mac_verify_finish, if the operation is
of the wrong type, abort the operation before returning BAD_STATE.
No common signature algorithm uses a salt (RSA-PKCS#1v1.5, RSA-PSS,
DSA, ECDSA, EdDSA). We don't even take an IV for MAC whereas MAC
algorithms with IV are uncommon but heard of. So remove the salt
parameter from psa_asymmetric_sign and psa_asymmetric_verify.
Add tests of key policy checks for MAC, cipher, AEAD, asymmetric
encryption and asymmetric signature. For each category, test
with/without the requisite usage flag in each direction, and test
algorithm mismatch.
At this point it fixes memory leaks as well. These memory leaks are the
fault of the 'psa_cipher_finish()' function and the calls fixed in this
commit (among with many others in the test suite) will become obsolete
after fixing 'psa_cipher_finish()'.
Add required includes in tests and psa_crypto.c file in order to be able to compilef for the SPM solution.
Some functions needed to be deprecated from psa_crypto.c since they already implemented in the SPM.
Use PSA_BLOCK_CIPHER_BLOCK_SIZE() macro to get the cipher block size instead of accessing the operation struct
additionally, for SPM case, the 'block_size' member is not a member in the operation struct
In tests that had a hard-coded buffer size, use PSA_MAC_MAX_SIZE or
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE as appropriate.
Test that PSA_xxx_MAX_SIZE is larger than the size used in tests that
expect a specific output.
Make psa_export_key() always set a valid data_length when exporting,
even when there are errors. This makes the API easier to use for buggy
programs (like our test code).
Our test code previously used exported_length uninitialized when
checking to see that the buffer returned was all zero in import_export()
in the case where an error was returned from psa_export_key().
Initialize exported_length to an invalid length, and check that it gets
set properly by psa_export_key(), to avoid this using export_length
uninitialized. Note that the mem_is_zero() check is still valid when
psa_export_key() returns an error, e.g. where exported_length is 0, as
we want to check that nothing was written to the buffer on error.
Out test code also previous passed NULL for the data_length parameter of
psa_export_key() when it expected a failure (in key_policy_fail()).
However, data_length is not allowed to be NULL, especially now that we
write to data_length from psa_export_key() even when there are errors.
Update the test code to not pass in a NULL data_length.
It isn't used to define other macros and it doesn't seem that useful
for users. Remove it, we can reintroduce it if needed.
Define a similar function key_type_is_raw_bytes in the implementation
with a clear semantics: it's a key that's represented as a struct
raw_data.
In the test generate_random, focus on testing that psa_generate_random
is writing all the bytes of the output buffer and no more. Add a check
that it is writing to each byte of the output buffer. Do not try to
look for repeating output as the structure of a unit test isn't likely
to catch that sort of problem anyway.
Also add what was missing in the test suite to support block ciphers
with a block size that isn't 16.
Fix some buggy test data that passed only due to problems with DES
support in the product.
When psa_mac_start(), psa_encrypt_setup() or psa_cipher_setup()
failed, depending on when the failure happened, it was possible that
psa_mac_abort() or psa_cipher_abort() would crash because it would try
to call a free() function uninitialized data in the operation
structure. Refactor the functions so that they initialize the
operation structure before doing anything else.
Add non-regression tests and a few more positive and negative unit
tests for psa_mac_start() and psa_cipher_setup() (the latter via
psa_encrypt_setip()).
In psa_export_key, ensure that each byte of the output buffer either
contains its original value, is zero, or is part of the actual output.
Specifically, don't risk having partial output on error, and don't
leave extra data at the end of the buffer when exporting an asymmetric
key.
Test that exporting to a previously zeroed buffer leaves the buffer
zeroed outside the actual output if any.
* init-deinit
* import-export
* policies
* lifetime
* hash
* MAC
* cipher
* AEAD
* asymmetric sign
* asymmetric verify
* asymmetric encrypt-decrypt
This commit only moves test functions and test cases around. It does
not modify, add or remove tests.
Get rid of many redundant casts. In particular, it is not useful to
cast uint32_t values to size_t before performing arithmetic or
comparisons on them.
Rewrap a number of function calls, many of which now have narrower
arguments thanks to the removed casts. When a function call doesn't
fit on a single line, avoid grouping unrelated parameters together,
but do try to group a buffer pointer and the associated size.
Define more auxiliary variables xxx of a particular integer
type (psa_algorithm_t, psa_key_usage_t, etc.) corresponding to a test
function xxx_arg which has the type int. This avoids the need to cast
xxx_arg to an unsigned type sometimes in the code.
Avoid lines longer than 80 columns.
Remove some redundant parentheses, e.g. change
if( ( a == b ) && ( c == d ) )
to
if( a == b && c == d )
which makes lines less long and makes the remaining parentheses more
relevant.
Add missing parentheses around return statements.
There should be no semantic change in this commit.
Always adding things at the end tends to create merge conflicts.
Adding in the middle in this way makes the order more logical in
addition to avoiding conflicts.
In cipher_test_verify_output_multpart, tweak the ways chunk sizes are
added in order to get rid of the variable temp. In other functions,
this commit does not change the logic at all.
Only whitespace changes.
* Remove tabs.
* Remove trailing whitespace.
* Correct some misindented lines.
* Normalize whitespace around some punctuation.
* Split some lines to avoid going over 80 columns.
cipher_test_positive was never compiled due to a syntax error in the
BEGIN_CASE magic comment. It has now been duplicated as
cipher_test_encrypt. Remove the copy that was never compiled.
Conflicts:
library/psa_crypto.c
tests/suites/test_suite_psa_crypto.data
tests/suites/test_suite_psa_crypto.function
All the conflicts are concurrent additions where the order doesn't
matter. I put the code from feature-psa (key policy) before the code
from PR #13 (key lifetime).
New header file crypto_struct.h. The main file crypto.sh declares
structures which are implementation-defined. These structures must be
defined in crypto_struct.h, which is included at the end so that the
structures can use types defined in crypto.h.
Implement psa_hash_start, psa_hash_update and psa_hash_final. This
should work for all hash algorithms supported by Mbed TLS, but has
only been smoke-tested for SHA-256, and only in the nominal case.
Define psa_key_type_t and a first stab at a few values.
New functions psa_import_key, psa_export_key, psa_destroy_key,
psa_get_key_information. Implement them for raw data and RSA.
Under the hood, create an in-memory, fixed-size keystore with room
for MBEDTLS_PSA_KEY_SLOT_COUNT - 1 keys.
New module psa_crypto.c (MBEDTLS_PSA_CRYPTO_C):
Platform Security Architecture compatibility layer on top of
libmedcrypto.
Implement psa_crypto_init function which sets up a RNG.
Add a mbedtls_psa_crypto_free function which deinitializes the
library.
Define a first batch of error codes.