In psa_generator_import_key, if generating a DES or 3DES key, set the
parity bits.
Add tests for deriving a DES key. Also test deriving an AES key while
I'm at it.
In psa_generator_hkdf_read, return BAD_STATE if we're trying to
construct more output than the algorithm allows. This can't happen
through the API due to the capacity limit, but it could potentially
happen in an internal call.
Also add a test case that verifies that we can set up HKDF with its
maximum capacity and read up to the maximum capacity.
New key type PSA_KEY_TYPE_DERIVE. New usage flag PSA_KEY_USAGE_DERIVE.
New function psa_key_derivation.
No key derivation algorithm is implemented yet. The code may not
compile with -Wunused.
Write some unit test code for psa_key_derivation. Most of it cannot be
used yet due to the lack of a key derivation algorithm.
Add a label argument to all asymmetric encryption test functions
(currently empty in all tests, but that will change soon).
In asymmetric_encrypt and asymmetric_decrypt, with an empty label,
test with both a null pointer and a non-null pointer.
Although RSASSA-PSS defines its input as a message to be hashed, we
implement a sign-the-hash function. This function can take an input
which isn't a hash, so don't restrict the size of the input, any more
than Mbed TLS does.
Remove a redundant check that hash_length fits in unsigned int for the
sake of Mbed TLS RSA functions.
Test that PSS accepts inputs of various lengths. For PKCS#1 v1.5
signature in raw mode, test the maximum input length.
This required tweaking exercise_signature_key to use a payload size
for the signature based on the algorithm, since our implementation of
PSS requires that the input size matches the hash size. This would
also be the case for PKCS#1 v1.5 with a specified hash.
* No test depends on MBEDTLS_PK_C except via MBEDTLS_PK_PARSE_C, so
remove MBEDTLS_PK_C and keep only MBEDTLS_PK_PARSE_C.
* Add MBEDTLS_PK_WRITE_C for pk export tests.
* Add MBEDTLS_GENPRIME for RSA key generation tests.
* Add dependencies to AEAD tests.
* Add missing dependencies to many RSA tests.
* Add a test for decryption with invalid padding.
* Add a test for encryption with input too large.
* In negative tests, pass input whose length matches the key length,
unless that's what the test is about.
Change most asymmetric_verify to use public keys (they were all using
key pairs before). Keep one test with an RSA key pair and one with an
EC key pair.
Revise the test function asymmetric_encrypt_fail into
asymmetric_encrypt and use it for positive tests as well. Get the
expected output length from PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE. Check
the actual output length against test data.
Add positive test cases for encryption: one with an RSA public
key (this is the only test for encryption with a public key rather
than a key pair) and one with a key pair.
Add tests of key policy checks for MAC, cipher, AEAD, asymmetric
encryption and asymmetric signature. For each category, test
with/without the requisite usage flag in each direction, and test
algorithm mismatch.
Change the representation of an ECDSA signature from the ASN.1 DER
encoding used in TLS and X.509, to the concatenation of r and s
in big-endian order with a fixed size. A fixed size helps memory and
buffer management and this representation is generally easier to use
for anything that doesn't require the ASN.1 representation. This is
the same representation as PKCS#11 (Cryptoki) except that PKCS#11
allows r and s to be truncated (both to the same length), which
complicates the implementation and negates the advantage of a
fixed-size representation.
* Distinguish randomized ECDSA from deterministic ECDSA.
* Deterministic ECDSA needs to be parametrized by a hash.
* Randomized ECDSA only uses the hash for the initial hash step,
but add ECDSA(hash) algorithms anyway so that all the signature
algorithms encode the initial hashing step.
* Add brief documentation for the ECDSA signature mechanisms.
* Also define DSA signature mechanisms while I'm at it. There were
already key types for DSA.
* PSS needs to be parametrized by a hash.
* Don't use `_MGF1` in the names of macros for OAEP and PSS. No one
ever uses anything else.
* Add brief documentation for the RSA signature mechanisms.
Add a negative test for import where the expected key is an EC key
with the correct key size, but the wrong curve. Change the test that
tries to import an RSA key when an EC key is expected to have the
expected key size.
Because exporting-public a symmetric key fails, we have no reasonable
expectation that the exported key length has any value at all other than
something obviously incorrect or "empty", like a key with a length of 0.
Our current implementation explicitly sets the exported key length to 0
on errors, so test for this. Fix the "PSA import/export-public: cannot
export-public a symmetric key" test to expect a key length of 0 instead
of 162.
In the test generate_random, focus on testing that psa_generate_random
is writing all the bytes of the output buffer and no more. Add a check
that it is writing to each byte of the output buffer. Do not try to
look for repeating output as the structure of a unit test isn't likely
to catch that sort of problem anyway.
Also add what was missing in the test suite to support block ciphers
with a block size that isn't 16.
Fix some buggy test data that passed only due to problems with DES
support in the product.
In psa_hash_start, psa_mac_start and psa_cipher_setup, return
PSA_ERROR_INVALID_ARGUMENT rather than PSA_ERROR_NOT_SUPPORTED when
the algorithm parameter is not the right category.
When psa_mac_start(), psa_encrypt_setup() or psa_cipher_setup()
failed, depending on when the failure happened, it was possible that
psa_mac_abort() or psa_cipher_abort() would crash because it would try
to call a free() function uninitialized data in the operation
structure. Refactor the functions so that they initialize the
operation structure before doing anything else.
Add non-regression tests and a few more positive and negative unit
tests for psa_mac_start() and psa_cipher_setup() (the latter via
psa_encrypt_setip()).
Exporting an asymmetric key only worked if the target buffer had
exactly the right size, because psa_export_key uses
mbedtls_pk_write_key_der or mbedtls_pk_write_pubkey_der and these
functions write to the end of the buffer, which psa_export_key did not
correct for. Fix this by moving the data to the beginning of the
buffer if necessary.
Add non-regression tests.