Add MBEDTLS_ERR_XXX_HW_ACCEL_FAILED error codes for all cryptography
modules where the software implementation can be replaced by a hardware
implementation.
This does not include the individual message digest modules since they
currently have no way to return error codes.
This does include the higher-level md, cipher and pk modules since
alternative implementations and even algorithms can be plugged in at
runtime.
This commit allows users to provide alternative implementations of the
ECJPAKE interface through the configuration option MBEDTLS_ECJPAKE_ALT.
When set, the user must add `ecjpake_alt.h` declaring the same
interface as `ecjpake.h`, as well as add some compilation unit which
implements the functionality. This is in line with the preexisting
support for alternative implementations of other modules.
The _ext suffix suggests "new arguments", but the new functions have
the same arguments. Use _ret instead, to convey that the difference is
that the new functions return a value.
Conflict resolution:
* ChangeLog: put the new entries in their rightful place.
* library/x509write_crt.c: the change in development was whitespace
only, so use the one from the iotssl-1251 feature branch.
- Adapt the change in all.sh to the new keep-going mode
- Restore alphabetical order of configuration flags for
alternative implementations in config.h and rebuild
library/version_features.c
Conflict resolution: additions in the same places as
upstream-public/pr/865, both adding into lexicographically sorted
lists, resolved by taking the additions in lexicographic order.
* development:
Timing self test: shorten redundant tests
Timing self test: increased duration
Timing self test: increased tolerance
Timing unit tests: more protection against infinite loops
Unit test for mbedtls_timing_hardclock
New timing unit tests
selftest: allow excluding a subset of the tests
selftest: allow running a subset of the tests
selftest: refactor to separate the list of tests from the logic
Timing self test: print some diagnosis information
mbedtls_timing_get_timer: don't use uninitialized memory
timing interface documentation: minor clarifications
Timing: fix mbedtls_set_alarm(0) on Unix/POSIX
* public/pr/1136:
Timing self test: shorten redundant tests
Timing self test: increased duration
Timing self test: increased tolerance
Timing unit tests: more protection against infinite loops
Unit test for mbedtls_timing_hardclock
New timing unit tests
selftest: allow excluding a subset of the tests
selftest: allow running a subset of the tests
selftest: refactor to separate the list of tests from the logic
Timing self test: print some diagnosis information
mbedtls_timing_get_timer: don't use uninitialized memory
timing interface documentation: minor clarifications
Timing: fix mbedtls_set_alarm(0) on Unix/POSIX
* Correct order of sections in ChangeLog
* Restore unintentionally removed whitespace and
formatting improvements.
* Consistently rename MBEDTLS_ERR_RSA_EXPORT_UNSUPPORTED
to MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION in rsa.h
documentation.
mbedtls_timing_get_timer with reset=1 is called both to initialize a
timer object and to reset an already-initialized object. In an
initial call, the content of the data structure is indeterminate, so
the code should not read from it. This could crash if signed overflows
trap, for example.
As a consequence, on reset, we can't return the previously elapsed
time as was previously done on Windows. Return 0 as was done on Unix.
* restricted/pr/403:
Correct record header size in case of TLS
Don't allocate space for DTLS header if DTLS is disabled
Improve debugging output
Adapt ChangeLog
Add run-time check for handshake message size in ssl_write_record
Add run-time check for record content size in ssl_encrypt_buf
Add compile-time checks for size of record content and payload
* development:
Don't split error code description across multiple lines
Register new error code in error.h
Move deprecation to separate section in ChangeLog
Extend scope of ERR_RSA_UNSUPPORTED_OPERATION error code
Adapt RSA test suite
Adapt ChangeLog
Deprecate usage of RSA primitives with wrong key type
* restricted/pr/397:
Don't split error code description across multiple lines
Register new error code in error.h
Move deprecation to separate section in ChangeLog
Extend scope of ERR_RSA_UNSUPPORTED_OPERATION error code
Adapt RSA test suite
Adapt ChangeLog
Deprecate usage of RSA primitives with wrong key type
The previous commit reduced the internal header size to 5 bytes in case of
TLS. This is not a valid since in that situation Mbed TLS internally uses the
first 8 bytes of the message buffer for the implicit record sequence number.
In case truncated HMAC must be used but the Mbed TLS peer hasn't been updated
yet, one can use the compile-time option MBEDTLS_SSL_TRUNCATED_HMAC_COMPAT to
temporarily fall back to the old, non-compliant implementation of the truncated
HMAC extension.
This commit splits off the RSA helper functions into separate headers and
compilation units to have a clearer separation of the public RSA interface,
intended to be used by end-users, and the helper functions which are publicly
provided only for the benefit of designers of alternative RSA implementations.
1) move the change into Features from Changes, in the changLog
2) Change the feature alternative configuration MBEDTLS_ECDH_ALT
definition to function alternative defintions
MBEDTLS_ECDH_COMPUTE_SHARED_ALT and MBEDTLS_ECDH_GEN_PUBLIC_ALT
1) update ChangLog to have new feature in Features instead of Changes
2) Change MBEDTLS_ECDSA_ALT to function specific alternative definitions:
MBEDTLS_ECDSA_SIGN_ALT, MBEDTLS_ECDSA_VERIFY_ALT and MBEDTLS_ECDSA_GENKEY_ALT
It is not necessary to pass a CSPRNG to `mbedtls_rsa_deduce_moduli`, as there
exist well-working static strategies, and even if a PRNG is preferred, a
non-secure one would be sufficient.
Further, the implementation is changed to use a static strategy for the choice
of candidates which according to some benchmarks even performs better than the
previous one using random candidate choices.
This commit restricts WANT_READ to indicate that no data is available on the
underlying transport. To signal the need for further processing - which was
previously also handled through this error code - a new internal error code
MBEDTLS_ERR_SSL_CONTINUE_PROCESSING is introduced.
- Enhances the documentation of mbedtls_ssl_get_bytes_avail (return
the number of bytes left in the current application data record, if
there is any).
- Introduces a new public function mbedtls_ssl_check_pending for
checking whether any data in the internal buffers still needs to be
processed. This is necessary for users implementing event-driven IO
to decide when they can safely idle until they receive further
events from the underlying transport.
Further, state explicitly that wrong key types need not be supported by alternative RSA implementations, and that those
may instead return the newly introduced error code MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION.
This commit returns to using constant macros instead of global variables for the DHM group constants. Further, macros
providing the binary encoding of the primes from RFC 3526 and RFC 7919 are added. The hex-string macros are deprecated.
Original intention was to be allowed to perform in-place operations like changing the byte-order before importing
parameters into an HSM. Now a copy is needed in this case, but there's no more danger of a user expecting the arguments
to be left untouched.
Document explicitly that `mbedtls_rsa_check_privkey` and `mbedtls_rsa_complete` succeeding does not guarantee the
consistency of the underlying RSA private key but only that enough information is present to perform a private key
operation.
This commit disables the new MBEDTLS_RSA_FORCE_BLINDING option by default to preserve backwards
compatibility. Further, it deprecates disabling to prepare for a future release in which blinding will be
unconditionally enforced.
* mbedtls-2.6: (27 commits)
Update version number to 2.6.0
Fix language in Changelog for clarity
Improve documentation of PKCS1 decryption functions
Fix style and missing item in ChangeLog
Add credit to Changelog to fix for #666
Fix naked call to time() with platform call
Fix ChangeLog for duplication after merge
Rename time and index parameter to avoid name conflict.
Correct comment
Adapt ChangeLog
Reliably zeroize sensitive data in AES sample application
Reliably zeroize sensitive data in Crypt-and-Hash sample application
Fix potential integer overflow parsing DER CRT
Fix potential integer overflow parsing DER CRL
Move the git scripts to correct path
Update after @sbutcher-arm comments
Fix slash direction for linux path
Add note for the git_hoos README file
Pre push hook script
Check return code of mbedtls_mpi_fill_random
...
This commit adds the function mbedtls_rsa_validate_crt for validating a set of CRT parameters. The function
mbedtls_rsa_check_crt is simplified accordingly.
As done by previous commits for ECC and ECDSA:
- use explicit state assignments rather than increment
- always place the state update right before the operation label
This will make it easier to add restart support for other operations later if
desired.
SSL-specific changes:
- remove useless states: when the last restartable operation on a message is
complete, ssl->state is incremented already, so we don't need any additional
state update: ecrs_state is only meant to complement ssl->state
- rename remaining states consistently as <message>_<operation>
- move some labels closer to the actual operation when possible (no assignment
to variables used after the label between its previous and current position)
Alternative RSA implementations can be provided by defining MBEDTLS_RSA_ALT in
config.h, defining an mbedtls_rsa_context struct in a new file rsa_alt.h and
re-implementing the RSA interface specified in rsa.h.
Through the previous reworkings, the adherence to the interface is the only
implementation obligation - in particular, implementors are free to use a
different layout for the RSA context structure.
This commit extends the RSA interface by import/export calls that can be used to
setup an RSA context from a subset of the core RSA parameters (N,P,Q,D,E).
The intended workflow is the following:
1. Call mbedtls_rsa_import one or multiple times to import the core parameters.
2. Call mbedtls_rsa_complete to deduce remaining core parameters as well as any
implementation-defined internal helper variables.
The RSA context is ready for use after this call.
The import function comes in two variants mbedtls_rsa_import and
mbedtls_rsa_import_raw, the former taking pointers to MPI's as input, the latter
pointers buffers holding to big-endian encoded MPI's.
The reason for this splitting is the following: When only providing an import
function accepting const MPI's, a user trying to import raw binary data into an
RSA context has to convert these to MPI's first which before passing them to the
import function, introducing an unnecessary copy of the data in memory. The
alternative would be to have another MPI-based import-function with
move-semantics, but this would be in contrast to the rest of the library's
interfaces.
Similarly, there are functions mbedtls_rsa_export and mbedtls_rsa_export_raw for
exporting the core RSA parameters, either as MPI's or in big-endian binary
format.
The main import/export functions deliberately do not include the additional
helper values DP, DQ and QP present in ASN.1-encoded RSA private keys. To
nonetheless be able to check whether given parameters DP, DQ and QP are in
accordance with a given RSA private key, the interface is extended by a function
mbedtls_rsa_check_opt (in line with mbedtls_rsa_check_privkey,
mbedtls_rsa_check_pubkey and mbedtls_rsa_check_pub_priv). Exporting the optional
parameters is taken care of by mbedtls_export_opt (currently MPI format only).
This commit adds convenience functions to the RSA module for computing a
complete RSA private key (with fields N, P, Q, D, E, DP, DQ, QP) from a subset
of core parameters, e.g. (N, D, E).
Child was almost redundant as it's already saved in ver_chain, except it was
multiplexed to also indicate whether an operation is in progress. This commit
removes it and introduces an explicit state variable instead.
This state can be useful later if we start returning IN_PROGRESS at other
points than find_parent() (for example when checking CRL).
Note that the state goes none -> find_parent and stays there until the context
is free(), as it's only on the first call that nothing was in progress.
Some parts were already implicitly using this as the two ifdefs were nested,
and some others didn't, which resulted in compile errors in some configs. This
fixes those errors and saves a bit of code+RAM that was previously wasted when
ECP_RESTARTABLE was defined but ECDSA_C wasn't
Previously we kept the ecdsa context created by the PK layer for ECDSA
operations on ECKEY in the ecdsa_restart_ctx structure, which was wrong, and
caused by the fact that we didn't have a proper handling of restart
sub-contexts in the PK layer.
The fact that you needed to pass a pointer to mbedtls_ecdsa_restart_ctx (or
that you needed to know the key type of the PK context) was a breach of
abstraction.
Change the API (and callers) now, and the implementation will be changed in
the next commit.
- more consistent naming with ecrs prefix for everything
- always check it enabled before touching the rest
- rm duplicated code in parse_server_hello()
This is mainly for the benefit of SSL modules, which only supports restart in
a limited number of cases. In the other cases (ECDHE_PSK) it would currently
return ERR_ECP_IN_PROGRESS and the user would thus call ssl_handshake() again,
but the SSL code wouldn't handle state properly and things would go wrong in
possibly unexpected ways. This is undesirable, so it should be possible for
the SSL module to choose if ECDHE should behave the old or the new way.
Not that it also brings ECDHE more in line with the other modules which
already have that choice available (by passing a NULL or valid restart
context).
For RSA, we could either have the function return an error code like
NOT_IMPLEMENTED or just run while disregarding ecp_max_ops. IMO the second
option makes more sense, as otherwise the caller would need to check whether
the key is EC or RSA before deciding to call either sign() or
sign_restartable(), and having to do this kind of check feels contrary to the
goal of the PK layer.
Otherwise code that uses these functions in other modules will have to do:
#if defined(MBEDTLS_ECP_RESTARTABLE)
ret = do_stuff( there, may, be, many, args );
#else
ret = do_stuff( their, may, be, namy, args, rs_ctx );
#fi
and there is a risk that the arg list will differ when code is updated, and
this might not be caught immediately by tests because this depends on a
config.h compile-time option which are harder to test.
Always declaring the restartable variants of the API functions avoids this
problem; the cost in ROM size should be negligible.
This will be useful for restartable ECDH and ECDSA. Currently they call
mbedtls_ecp_gen_keypair(); one could make that one restartable, but that means
adding its own sub-context, while ECDH and ECDSA (will) have their own
contexts already, so switching to this saves one extra context.
This should only be done in the top-level function.
Also, we need to know if we indeed are the top-level function or not: for
example, when mbedtls_ecp_muladd() calls mbedtls_ecp_mul(), the later should
not reset ops_done. This is handled by the "depth" parameter in the restart
context.
When a restartable function calls another restartable function, the current
ops_count needs to be shared to avoid either doing too many operations or
returning IN_PROGRESS uselessly. So it needs to be in the top-level context
rather than a specific sub-context.
This was intended to detect aborted operations, but now that case is handled
by the caller freeing the restart context.
Also, as the internal sub-context is managed by the callee, no need for the
caller to free/reset the restart context between successful calls.
EC-JPAKE warning is no longer needed as we now have separate _restartable()
functions, and JPAKE will just call the non-restartable version.
Concurrency warning removed as this is one of the reasons why this design was
chosen.
Following discussion in the team, it was deemed preferable for the restart
context to be explicitly managed by the caller.
This commits in the first in a series moving in that directly: it starts by
only changing the public API, while still internally using the old design.
Future commits in that series will change to the new design internally.
The test function was simplified as it no longer makes sense to test for some
memory management errors since that responsibility shifted to the caller.
It's going to be convenient for each function that can generate a
MBEDTLS_ERR_ECP_IN_PROGRESS on its own (as opposed to just passing it around)
to have its own restart context that they can allocate and free as needed
independently of the restart context of other functions.
For example ecp_muladd() is going to have its own restart_muladd context that
in can managed, then when it calls ecp_mul() this will manage a restart_mul
context without interfering with the caller's context.
So, things need to be renames to avoid future name clashes.
From a user's perspective, you want a "basic operation" to take approximately
the same amount of time regardless of the curve size, especially since max_ops
is a global setting: otherwise if you pick a limit suitable for P-384 then
when you do an operation on P-256 it will return way more often than needed.
Said otherwise, a user is actually interested in actual running time, and we
do the API in terms of "basic ops" for practical reasons (no timers) but then
we should make sure it's a good proxy for running time.
Ok, so the original plan was to make mpi_inv_mod() the smallest block that
could not be divided. Updated plan is that the smallest block will be either:
- ecp_normalize_jac_many() (one mpi_inv_mod() + a number or mpi_mul_mpi()s)
- or the second loop in ecp_precompute_comb()
With default settings, the minimum non-restartable sequence is:
- for P-256: 222M
- for P-384: 341M
This is within a 2-3x factor of originally planned value of 120M. However,
that value can be approached, at the cost of some performance, by setting
ECP_WINDOW_SIZE (w below) lower than the default of 6. For example:
- w=4 -> 166M for any curve (perf. impact < 10%)
- w=2 -> 130M for any curve (perf. impact ~ 30%)
My opinion is that the current state with w=4 is a good compromise, and the
code complexity need to attain 120M is not warranted by the 1.4 factor between
that and the current minimum with w=4 (which is close to optimal perf).
We'll need to store MPIs and other things that allocate memory in this
context, so we need a place to free it. We can't rely on doing it before
returning from ecp_mul() as we might return MBEDTLS_ERR_ECP_IN_PROGRESS (thus
preserving the context) and never be called again (for example, TLS handshake
aborted for another reason). So, ecp_group_free() looks like a good place to
do this, if the restart context is part of struct ecp_group.
This means it's not possible to use the same ecp_group structure in different
threads concurrently, but:
- that's already the case (and documented) for other reasons
- this feature is precisely intended for environments that lack threading
An alternative option would be for the caller to have to allocate/free the
restart context and pass it explicitly, but this means creating new functions
that take a context argument, and putting a burden on the user.
The plan is to count basic operations as follows:
- call to ecp_add_mixed() -> 11
- call to ecp_double_jac() -> 8
- call to mpi_mul_mpi() -> 1
- call to mpi_inv_mod() -> 120
- everything else -> not counted
The counts for ecp_add_mixed() and ecp_double_jac() are based on the actual
number of calls to mpi_mul_mpi() they they make.
The count for mpi_inv_mod() is based on timing measurements on K64F and
LPC1768 boards, and are consistent with the usual very rough estimate of one
inversion = 100 multiplications. It could be useful to repeat that measurement
on a Cortex-M0 board as those have smaller divider and multipliers, so the
result could be a bit different but should be the same order of magnitude.
The documented limitation of 120 basic ops is due to the calls to mpi_inv_mod()
which are currently not interruptible nor planned to be so far.
The fact that self-signed end-entity certs can be explicitly trusted by
putting them in the CA list even if they don't have the CA bit was not
documented though it's intentional, and tested by "Certificate verification #73
(selfsigned trusted without CA bit)" in test_suite_x509parse.data
It is unclear to me whether the restriction that explicitly trusted end-entity
certs must be self-signed is a good one. However, it seems intentional as it is
tested in tests #42 and #43, so I'm not touching it for now.
As noted in #557, several functions use 'index' resp. 'time'
as parameter names in their declaration and/or definition, causing name
conflicts with the functions in the C standard library of the same
name some compilers warn about.
This commit renames the arguments accordingly.
Allow forcing 64-bit integer type for bignum operations. Also introduce
the macro MBEDTLS_TYPE_UDBL to allow configuration of the double length
integer in unknown compilers.
Rename the macro MBEDTLS_PLATFORM_SETUP_ALT to
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT to make the name more descriptive
as this macro enables/disables both functions.
Add the following two functions to allow platform setup and teardown
operations for the full library to be hooked in:
* mbedtls_platform_setup()
* mbedtls_platform_teardown()
An mbedtls_platform_context C structure is also added and two internal
functions that are called by the corresponding setup and teardown
functions above:
* mbedtls_internal_platform_setup()
* mbedtls_internal_plartform_teardown()
Finally, the macro MBEDTLS_PLATFORM_SETUP_ALT is also added to allow
mbedtls_platform_context and internal function to be overriden by the
user as needed for a platform.
The functions mbedtls_aes_decrypt and mbedtls_aes_encrypt have been
superseded by mbedtls_aes_internal_decrypt and
mbedtls_aes_internal_encrypt, respectively. Alternative
implementations should now only replace the latter, and leave the
maintenance wrapper definitions of the former untouched.
This commit clarifies this in the documentation of the respective
configuration options MBEDTLS_AES_DECRYPT_ALT and
MBEDTLS_AES_ENCRYPT_ALT.
The previous commit b3e6872c9381ed4ce020d631dda1e0126c42b64f changed
to public functions from ssl_ciphersuite.h to static inline. This
commit reverts this change.
Protecting the ECP hardware acceleratior with mutexes is inconsistent with the
philosophy of the library. Pre-existing hardware accelerator interfaces
leave concurrency support to the underlying platform.
Fixes#863
Document the preconditions on the input and output buffers for
the PKCS1 decryption functions
- mbedtls_rsa_pkcs1_decrypt,
- mbedtls_rsa_rsaes_pkcs1_v15_decrypt
- mbedtls_rsa_rsaes_oaep_decrypt
Allow forcing 64-bit integer type for bignum operations. Also introduce
the macro MBEDTLS_TYPE_UDBL to allow configuration of the double length
integer in unknown compilers.
Rename the macro MBEDTLS_PLATFORM_SETUP_ALT to
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT to make the name more descriptive
as this macro enables/disables both functions.
Add the following two functions to allow platform setup and teardown
operations for the full library to be hooked in:
* mbedtls_platform_setup()
* mbedtls_platform_teardown()
An mbedtls_platform_context C structure is also added and two internal
functions that are called by the corresponding setup and teardown
functions above:
* mbedtls_internal_platform_setup()
* mbedtls_internal_plartform_teardown()
Finally, the macro MBEDTLS_PLATFORM_SETUP_ALT is also added to allow
mbedtls_platform_context and internal function to be overriden by the
user as needed for a platform.
The functions mbedtls_aes_decrypt and mbedtls_aes_encrypt have been
superseded by mbedtls_aes_internal_decrypt and
mbedtls_aes_internal_encrypt, respectively. Alternative
implementations should now only replace the latter, and leave the
maintenance wrapper definitions of the former untouched.
This commit clarifies this in the documentation of the respective
configuration options MBEDTLS_AES_DECRYPT_ALT and
MBEDTLS_AES_ENCRYPT_ALT.
The previous commit b3e6872c9381ed4ce020d631dda1e0126c42b64f changed
to public functions from ssl_ciphersuite.h to static inline. This
commit reverts this change.
Protecting the ECP hardware acceleratior with mutexes is inconsistent with the
philosophy of the library. Pre-existing hardware accelerator interfaces
leave concurrency support to the underlying platform.
Fixes#863
Document the preconditions on the input and output buffers for
the PKCS1 decryption functions
- mbedtls_rsa_pkcs1_decrypt,
- mbedtls_rsa_rsaes_pkcs1_v15_decrypt
- mbedtls_rsa_rsaes_oaep_decrypt