Previously, ecp_add_mixed(), commputing say P+Q, would allow for the
Q parameter to have an unset Z coordinate as a shortcut for Z == 1.
This was leveraged during computation and usage of the T-table
(storing low multiples of the to-be-multiplied point on the curve).
It is a potentially error-prone corner case, though, since an MPIs
with unset data pointer coordinate and limb size 0 is also a valid
representation of the number 0.
As a first step towards removing ECP points with unset Z coordinate,
the constant time T-array getter ecp_select_comb() has previously
been modified to return 'full' mbedtls_ecp_point structures,
including a 1-initialized Z-coordinate.
Similarly, this commit ...
- Modifies ecp_normalize_jac_many() to set the Z coordinates
of the points it operates on to 1 instead of freeing them.
- Frees the Z-coordinates of the T[]-array explicitly
once the computation and normalization of the T-table has finished.
As a minimal functional difference between old and new code,
the new code also frees the Z-coordinate of T[0]=P, which the
old code did not.
- Modifies ecp_add_mixed() to no longer allow unset Z coordinates.
Except for the post-precomputation storage form of the T[] array,
the code does therefore no longer use EC points with unset Z coordinate.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
Add a positive test case where both the client and the server require
authentication and both use a non-CA self-signed certificate.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
psa_aead_encrypt_setup() and psa_aead_decrypt_setup() were returning
PSA_ERROR_INVALID_ARGUMENT, while the same failed checks were producing
PSA_ERROR_NOT_SUPPORTED if they happened in psa_aead_encrypt() or
psa_aead_decrypt().
The PSA Crypto API 1.1 spec will specify PSA_ERROR_INVALID_ARGUMENT
in the case that the supplied algorithm is not an AEAD one.
Also move these shared checks to a helper function, to reduce code
duplication and ensure that the functions remain in sync.
Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
In the outcome file, report each test case in the file it's in, rather than
reporting them all from ssl-opt. This is more informative and matches what
check_test_cases.py does.
This fixes a bug whereby test cases from opt-testcases/* were not detected
as having run on the CI, because analyze_outcomes.py (which uses
check_test_cases.py) expects them in the containing file whereas they were
reported in ssl-opt.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This is meant to highlight similarities and differences in the
multi-part HMAC APIs.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Update the fork of the compliance test suite, and remove the multipart
AEAD tests from the expected failures list.
Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
ecp_select_comb() did previously not set the Z coordinate of the target point.
Instead, callers would either set it explicitly or leave it uninitialized,
relying on the (only partly upheld) convention that sometimes an uninitialized
Z value represents 1.
This commit modifies ecp_select_comb() to always set the Z coordinate to 1.
This comes at the cost of memory for a single coordinate, which seems worth
it for the increased robustness.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
This improves readibility and prepares for further changes
like the introduction of a single double-width temporary for
ECP arithmetic.
Signed-off-by: Hanno Becker <hanno.becker@arm.com>
Fix library references, tests and programs.
Testing is performed in the already present all.sh test.
Signed-off-by: Andrzej Kurek <andrzej.kurek@arm.com>
`ecp_add_mixed()` and `ecp_double_jac()` are the core subroutines
for elliptic curve arithmetic, and as such crucial for the performance
of ECP primitives like ECDHE and ECDSA.
This commit provides a very slight simplification and performance and
memory usage improvement to `ecp_add_mixed()` by removing the use of
three temporary MPIs used for coordinate calculations.
Where those variables were used, the code now writes directly to the
coordinate MPIs of the target elliptic curve point.
This is a valid change even if there is aliasing between input and
output, since at the time any of the coordinate MPIs in question is
written, the corresponding coordinates of both inputs are no longer
read.
(The analogous change in `ecp_double_jac()` can not be made since
this property does not hold for `ecp_double_jac()`.)
Signed-off-by: Hanno Becker <hanno.becker@arm.com>