The error code POLARSSL_ERR_X509_PASSWORD_MISMATCH is now properly
returned in case of an encryption failure in the padding. The
POLARSSL_ERR_X509_PASSWORD_REQUIRED error code is only returned for PEM
formatted private keys as for DER formatted ones it is impossible to
distinguish if a DER blob is PKCS#8 encrypted or not.
(cherry picked from commit 1fd4321ba2016dfaff2b48c11f731fc9ccbd7ccf)
Conflicts:
include/polarssl/error.h
scripts/generate_errors.pl
PKCS#8 encrypted key file support has been added to x509parse_key() with
support for some PCKS#12 PBE functions (pbeWithSHAAnd128BitRC4,
pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHAAnd2-KeyTripleDES-CBC)
(cherry picked from commit cf6e95d9a81c7b22271beb58a09b5c756148e62a)
Conflicts:
scripts/generate_errors.pl
Split up x509parse_key() into a (PEM) handler function and specific
DER parser functions for the PKCS#1 (x509parse_key_pkcs1_der()) and
unencrypted PKCS#8 (x509parse_key_pkcs8_unencrypted_der()) private
key formats.
(cherry picked from commit 65a1909dc6ff7b93f0a231a5a49d98d968c9bcdc)
Conflicts:
library/x509parse.c
code selection
The base RFC 4279 DHE-PSK ciphersuites are now supported and added.
The SSL code cuts out code not relevant for defined key exchange methods
A new OID module has been created that contains the main OID searching
functionality based on type-dependent arrays. A base type is used to
contain the basic values (oid_descriptor_t) and that type is extended to
contain type specific information (like a pk_alg_t).
As a result the rsa sign and verify function prototypes have changed. They
now expect a md_type_t identifier instead of the removed RSA_SIG_XXX
defines.
All OID definitions have been moved to oid.h
All OID matching code is in the OID module.
The RSA PKCS#1 functions cleaned up as a result and adapted to use the
MD layer.
The SSL layer cleanup up as a result and adapted to use the MD layer.
The X509 parser cleaned up and matches OIDs in certificates with new
module and adapted to use the MD layer.
The X509 writer cleaned up and adapted to use the MD layer.
Apps and tests modified accordingly
Made all modifications to include Ephemeral Elliptic Curve Diffie
Hellman ciphersuites into the existing SSL/TLS modules. All basic
handling of the ECDHE-ciphersuites (TLS_ECDHE_RSA_WITH_NULL_SHA,
TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA)
has been included.