Merge a development version of Mbed TLS 2.16.0 that doesn't have
parameter validation into development.
The following conflicts were resolved:
- Update ChangeLog to include release notes merged from development so
far, with a version of "2.14.0+01b34fb316a5" and release date of
"xxxx-xx-xx" to show this is not a released version, but instead a
snapshot of the development branch equivalent to version of the 2.14.0
with additional commits from the mbedtls/development branch up through
01b34fb316 included. Entries added for unreleased versions of Mbed
Crypto remain at the top of the file for Mbed TLS 2.xx.x.
- Replace the Mbed Crypto version of
mbedtls_rsa_rsaes_pkcs1_v15_decrypt() with the version from Mbed TLS
which fixes timing variations and memory access variations that could
lead to a Bleichenbacher-style padding oracle attack. This will
prevent using psa_asymmetric_decrypt() with zero-length output buffers
until a follow up commit is made to restore this capability.
- In ssl_srv.c, include changes for both the new ECDH interface and
opaque PSK as already added to development previously.
Additional changes to temporarily enable running tests:
ssl_srv.c and test_suite_ecdh use mbedtls_ecp_group_load instead of
mbedtls_ecdh_setup
test_suite_ctr_drbg uses mbedtls_ctr_drbg_update instead of
mbedtls_ctr_drbg_update_ret
psa_status_t is currently a signed type where only non-negative values
are used, which makes things a bit awkward. For now, non-negative
values trigger an error. This code will need to be revised if we
switch to using negative values as error codes.
Remove the type and bits arguments to psa_allocate_key() and
psa_create_key(). They can be useful if the implementation wants to
know exactly how much space to allocate for the slot, but many
implementations (including ours) don't care, and it's possible to work
around their lack by deferring size-dependent actions to the time when
the key material is created. They are a burden to applications and
make the API more complex, and the benefits aren't worth it.
Change the API and adapt the implementation, the units test and the
sample code accordingly.
Add new initializers for key policies and use them in our docs, example
programs, tests, and library code. Prefer using the macro initializers
due to their straightforwardness.
Some parts of the library, and crypto drivers, need to see key types,
algorithms, policies, etc. but not API functions. Move portable
integral types and macros to build and analyze values of these types
to a separate headers crypto_types.h and crypto_values.h.
No functional changes, code was only moved from crypto.h to the new headers.
GCC 4.8 warns that some variables may be used without having been
initialized. They aren't, but determining that takes nontrivial
analysis, so initialize them at the point of definition.
The previous prototype gave warnings are the strings produced by #cond and
__FILE__ are const, so we shouldn't implicitly cast them to non-const.
While at it modifying most example programs:
- include the header that has the function declaration, so that the definition
can be checked to match by the compiler
- fix whitespace
- make it work even if PLATFORM_C is not defined:
- CHECK_PARAMS is not documented as depending on PLATFORM_C and there is
no reason why it should
- so, remove the corresponding #if defined in each program...
- and add missing #defines for mbedtls_exit when needed
The result has been tested (make all test with -Werror) with the following
configurations:
- full with CHECK_PARAMS with PLATFORM_C
- full with CHECK_PARAMS without PLATFORM_C
- full without CHECK_PARAMS without PLATFORM_C
- full without CHECK_PARAMS with PLATFORM_C
Additionally, it has been manually tested that adding
mbedtls_aes_init( NULL );
near the normal call to mbedtls_aes_init() in programs/aes/aescrypt2.c has the
expected effect when running the program.
The sample programs require an additional handler function of
mbedtls_param_failed() to handle any failed parameter validation checks enabled
by the MBEDTLS_CHECK_PARAMS config.h option.
Some sample programs access structure fields directly. Making these work is
desirable in the long term, but these are not essential for the core
functionality in non-legacy mode.
Programs and tests need to be able to use PSA header files when
USE_CRYPTO_SUBMODULE and MBEDTLS_USE_PSA_CRYPTO are set. Add the crypto
submodule include folder, which contains psa headers, after the main
include folder so that psa headers can be found and crypto submodule
headers don't take precedence over mbedtls headers.
Otherwise, if `mbedtls_psa_get_free_key_slot()` fails to find a fresh
key slot, the slot value will be undefined, and the call to
`psa_destroy_key()` at the end of `main()` is undefined behavior.
Previously, command line arguments `psk_slot` and `psk_list_slot`
could be used to indicate the PSA key slots that the example
applications should use to store the PSK(s) provided.
This commit changes this approach to use the utility function
`mbedtls_psa_get_free_key_slot()` to obtain free key slots from
the PSA Crypto implementation automatically, so that users only
need to pass boolean flags `psk_opaque` and `psk_list_opaque`
on the command line to enable / disable PSA-based opaque PSKs.
This commit adds command line parameters `psk_slot` and `psk_list_slot`
to the example application `programs/ssl/ssl_server2`. These have the
following semantics:
- `psk_slot`: The same semantics as for the `ssl_client2` example
application. That is, if a PSK is configured through the use
of the command line parameters `psk` and `psk_identity`, then
`psk_slot=X` can be used to import the PSK into PSA key slot X
and registering it statically with the SSL configuration through
the new API call mbedtls_ssl_conf_hs_opaque().
- `psk_list_slot`: In addition to the static PSK registered in the
the SSL configuration, servers can register a callback for picking
the PSK corresponding to the PSK identity that the client chose.
The `ssl_server2` example application uses such a callback to select
the PSK from a list of PSKs + Identities provided through the
command line parameter `psk_list`, and to register the selected
PSK via `mbedtls_ssl_set_hs_psk()`. In this case, the new parameter
`psk_list_slot=X` has the effect of registering all PSKs provided in
in `psk_list` as PSA keys in the key slots starting from slot `X`,
and having the PSK selection callback register the chosen PSK
through the new API function `mbedtls_ssl_set_hs_psk_opaque()`.
This commit adds support for the use of PSA-based opaque PSKs
in the TLS client example application programs/ssl/ssl_client2.
Specifically, a numerical command line option `psk_slot` with
the following constraints and semantics is added:
- It can only be used alongside the provisioning of a raw PSK
through the preexisting `psk` command line option.
- It can only be used if both TLS 1.2 and a PSK-only ciphersuite
are enforced through the appropriate use of the `min_version`
and `force_ciphersuite` command line options.
- If the previous conditions are met, setting `psk_slot=d` will
result in the PSA key slot with identifier `d` being populated
with the raw PSK data specified through the `psk` parameter
and passed to Mbed TLS via `mbedtls_ssl_conf_psk_opaque()`
prior to the handshake.
Enforcing the TLS version and ciphersuite is necessary to determine
the exact KDF algorithm the PSK will be used for. This is required
as it is currently not possible to set up a key without specifying
exactly one algorithm the key may be used with.
Otherwise, if `mbedtls_psa_get_free_key_slot()` fails to find a fresh
key slot, the slot value will be undefined, and the call to
`psa_destroy_key()` at the end of `main()` is undefined behavior.
Previously, command line arguments `psk_slot` and `psk_list_slot`
could be used to indicate the PSA key slots that the example
applications should use to store the PSK(s) provided.
This commit changes this approach to use the utility function
`mbedtls_psa_get_free_key_slot()` to obtain free key slots from
the PSA Crypto implementation automatically, so that users only
need to pass boolean flags `psk_opaque` and `psk_list_opaque`
on the command line to enable / disable PSA-based opaque PSKs.
This commit adds command line parameters `psk_slot` and `psk_list_slot`
to the example application `programs/ssl/ssl_server2`. These have the
following semantics:
- `psk_slot`: The same semantics as for the `ssl_client2` example
application. That is, if a PSK is configured through the use
of the command line parameters `psk` and `psk_identity`, then
`psk_slot=X` can be used to import the PSK into PSA key slot X
and registering it statically with the SSL configuration through
the new API call mbedtls_ssl_conf_hs_opaque().
- `psk_list_slot`: In addition to the static PSK registered in the
the SSL configuration, servers can register a callback for picking
the PSK corresponding to the PSK identity that the client chose.
The `ssl_server2` example application uses such a callback to select
the PSK from a list of PSKs + Identities provided through the
command line parameter `psk_list`, and to register the selected
PSK via `mbedtls_ssl_set_hs_psk()`. In this case, the new parameter
`psk_list_slot=X` has the effect of registering all PSKs provided in
in `psk_list` as PSA keys in the key slots starting from slot `X`,
and having the PSK selection callback register the chosen PSK
through the new API function `mbedtls_ssl_set_hs_psk_opaque()`.
This commit adds support for the use of PSA-based opaque PSKs
in the TLS client example application programs/ssl/ssl_client2.
Specifically, a numerical command line option `psk_slot` with
the following constraints and semantics is added:
- It can only be used alongside the provisioning of a raw PSK
through the preexisting `psk` command line option.
- It can only be used if both TLS 1.2 and a PSK-only ciphersuite
are enforced through the appropriate use of the `min_version`
and `force_ciphersuite` command line options.
- If the previous conditions are met, setting `psk_slot=d` will
result in the PSA key slot with identifier `d` being populated
with the raw PSK data specified through the `psk` parameter
and passed to Mbed TLS via `mbedtls_ssl_conf_psk_opaque()`
prior to the handshake.
Enforcing the TLS version and ciphersuite is necessary to determine
the exact KDF algorithm the PSK will be used for. This is required
as it is currently not possible to set up a key without specifying
exactly one algorithm the key may be used with.
Mbed TLS version 2.14.0
Resolved conflicts in include/mbedtls/config.h,
tests/scripts/check-files.py, and yotta/create-module.sh by removing yotta.
Resolved conflicts in tests/.jenkins/Jenkinsfile by continuing to run
mbedtls-psa job.
This commit adds a command line option `md` to the example application
`programs/x509/cert_req` allowing to specify the hash algorithm to use
when signing the CSR.
snprintf was only added in Visual Studio 2015. This adds support
for building using Visual Studio versions prior to 2015.
This implementation of snprintf has been taken from platform.c
* development:
ssl-opt.sh: change expected output for large srv packet test with SSLv3
Adapt ChangeLog
Fix bug in SSL ticket implementation removing keys of age < 1s
ssl-opt.sh: Add DTLS session resumption tests
Add ChangeLog entry
Fix typo
Fix hmac_drbg failure in benchmark, with threading
Remove trailing whitespace
Remove trailing whitespace
ssl_server2: add buffer overhead for a termination character
Add missing large and small packet tests for ssl_server2
Added buffer_size and response_size options for ssl-server2. Added appropriate tests.
Solving a conflict in tests/ssl-opt.sh: two set of tests were added at the
same place (just after large packets):
- restartable ECC tests (in this branch)
- server-side large packets (in development)
Resolution was to move the ECC tests after the newly added server large packet
ones.
This commit replaces multiple `memset()` calls in the example
programs aes/aescrypt2.c and aes/crypt_and_hash.c by calls to
the reliable zeroization function `mbedtls_zeroize()`.
While not a security issue because the code is in the example
programs, it's bad practice and should be fixed.
When using a primality testing function the tolerable error rate depends
on the scheme in question, the required security strength and wether it
is used for key generation or parameter validation. To support all use
cases we need more flexibility than what the old API provides.