The previous code used comparison operators >= and == that are quite likely to
be compiled to branches by some compilers on some architectures (with some
optimisation levels).
For example, take the following function:
void old_update( size_t data_len, size_t *padlen )
{
*padlen *= ( data_len >= *padlen + 1 );
}
With Clang 3.8, let's compile it for the Arm v6-M architecture:
% clang --target=arm-none-eabi -march=armv6-m -Os foo.c -S -o - |
sed -n '/^old_update:$/,/\.size/p'
old_update:
.fnstart
@ BB#0:
.save {r4, lr}
push {r4, lr}
ldr r2, [r1]
adds r4, r2, #1
movs r3, #0
cmp r4, r0
bls .LBB0_2
@ BB#1:
mov r2, r3
.LBB0_2:
str r2, [r1]
pop {r4, pc}
.Lfunc_end0:
.size old_update, .Lfunc_end0-old_update
We can see an unbalanced secret-dependant branch, resulting in a total
execution time depends on the value of the secret (here padlen) in a
straightforward way.
The new version, based on bit operations, doesn't have this issue:
new_update:
.fnstart
@ BB#0:
ldr r2, [r1]
subs r0, r0, #1
subs r0, r0, r2
asrs r0, r0, #31
bics r2, r0
str r2, [r1]
bx lr
.Lfunc_end1:
.size new_update, .Lfunc_end1-new_update
(As a bonus, it's smaller and uses less stack.)
While there's no formal guarantee that the version based on bit operations in
C won't be translated using branches by the compiler, experiments tend to show
that's the case [1], and it is commonly accepted knowledge in the practical
crypto community that if we want to sick to C, bit operations are the safest
bet [2].
[1] https://github.com/mpg/ct/blob/master/results
[2] https://github.com/veorq/cryptocoding
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Move key identifier related macros and functions from
crypto_types.h to crypto_values.h as the latter is
the intended file to put them in.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
No obvious reason to not enable owner identifier encoding
in baremetal as multi-client support is expected to be needed
for some embedded platforms. Thus enable it.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
* Reworked the cipher context once again to be more robustly defined
* Removed redundant memset
* Unified behaviour on failure between driver and software in cipher_finish
* Cipher test driver setup function now also returns early when its status
is overridden, like the other test driver functions
* Removed redundant test cases
* Added bad-order checking to verify the driver doesn't get called where
the spec says it won't.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
As pointed out by Ronald. The key slot is populated using
get_key_from_slot, and after calling the driver the slot is
validated to not contain an external key, so calling
get_transparent_key is superfluous.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
Added zeroization of the wrapper context on failure/abort, and reliance on
the crypto core to not call an uninitialised wrapper.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
Once an operation has been 'accepted' by a driver, the remainder is bound
to the same driver, since driver-specific context structs cannot be shared.
This provides a pretty good gate mechanism for the fallback logic, too.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
With the increase in depends testing for PSA changes introduced
here the Travis builds are now taking too long. The check for
compilation guards will only be run on Jenkins now. See this comment
for further details.
https://github.com/ARMmbed/mbedtls/pull/3585#discussion_r485189748
Signed-off-by: John Durkop <john.durkop@fermatsoftware.com>