The debugging functions
- mbedtls_debug_print_ret,
- mbedtls_debug_print_buf,
- mbedtls_debug_print_mpi, and
- mbedtls_debug_print_crt
return immediately if the SSL configuration bound to the
passed SSL context is NULL, has no debugging functions
configured, or if the debug threshold is below the debugging
level.
However, they do not check whether the provided SSL context
is not NULL before accessing the SSL configuration bound to it,
therefore leading to a segmentation fault if it is.
In contrast, the debugging function
- mbedtls_debug_print_msg
does check for ssl != NULL before accessing ssl->conf.
This commit unifies the checks by always returning immediately
if ssl == NULL.
In `mbedtls_ccm_self_test()`, enforce input and output
buffers sent to the ccm API to be contigous and aligned,
by copying the test vectors to buffers on the stack.
In ecp_mul_comb(), if (!p_eq_g && grp->T == NULL) and then ecp_precompute_comb() fails (which can
happen due to OOM), then the new array of points T will be leaked (as it's newly allocated, but
hasn't been asigned to grp->T yet).
Symptom was a memory leak in ECDHE key exchange under low memory conditions.
The length to the debug message could conceivably leak through the time it
takes to print it, and that length would in turn reveal whether padding was
correct or not.
The basis for the Lucky 13 family of attacks is for an attacker to be able to
distinguish between (long) valid TLS-CBC padding and invalid TLS-CBC padding.
Since our code sets padlen = 0 for invalid padding, the length of the input to
the HMAC function, and the location where we read the MAC, give information
about that.
A local attacker could gain information about that by observing via a
cache attack whether the bytes at the end of the record (at the location of
would-be padding) have been read during MAC verification (computation +
comparison).
Let's make sure they're always read.
The basis for the Lucky 13 family of attacks is for an attacker to be able to
distinguish between (long) valid TLS-CBC padding and invalid TLS-CBC padding.
Since our code sets padlen = 0 for invalid padding, the length of the input to
the HMAC function gives information about that.
Information about this length (modulo the MD/SHA block size) can be deduced
from how much MD/SHA padding (this is distinct from TLS-CBC padding) is used.
If MD/SHA padding is read from a (static) buffer, a local attacker could get
information about how much is used via a cache attack targeting that buffer.
Let's get rid of this buffer. Now the only buffer used is the internal MD/SHA
one, which is always read fully by the process() function.
Move definition of `MBEDTLS_CIPHER_MODE_STREAM` to header file
(`mbedtls_cipher_internal.h`), because it is used by more than
one file. Raised by TrinityTonic in #1719