Mbed TLS has deprecated a few module specific error codes in favor of
more general-purpose or cross-module error codes. Use these new error
codes instead of the deprecated error codes.
Resolve conflicts by performing the following.
- Take the upstream Mbed TLS ChangeLog verbatim.
- Reject changes to Makefiles and CMake that are related to using Mbed
Crypto as a submodule. It doesn't make sense to use Mbed Crypto as a
submodule of itself.
- Reject README changes, as Mbed Crypto has its own, different README.
- Reject PSA-related changes to config.h. We don't want to disable the
availability of the PSA Crypto API by default in the Mbed Crypto
config.h.
- Don't inadvertently revert dead code removal in
mbedtls_cipher_write_tag() which was added in f2a7529403 ("Fix
double return statement in cipher.c")
- Where Mbed Crypto already had some MBEDTLS_USE_PSA_CRYPTO code (from
past companion PRs) take the latest version from Mbed TLS which
includes integration with MBEDTLS_CHECK_PARAMS.
- Update the version of the shared library files to match what's
currently present in Mbed TLS.
- Reject removal of testing with PSA from config full tests.
- Resolve conflicts in test tests/suites/helpers.function, where both
Mbed Crypto and Mbed TLS both added documentation for TEST_ASSERT.
Combine text from both documentation efforts.
- Reject adding a submodule of ourselves.
- Reject addition of submodule tests in all.sh.
- Reject addition of submodule to library path in
tests/scripts/run-test-suites.pl.
- Avoid using USE_CRYPTO_SUBMODULE=1 in
component_test_use_psa_crypto_full_cmake_asan() in all.sh.
Enable handling of zero-length null output in PKCS1 v1.5 decryption.
Prevent undefined behavior by avoiding a memcpy() to zero-length null
output buffers.
In mbedtls_rsa_rsaes_oaep_encrypt and
mbedtls_rsa_rsaes_pkcs1_v15_encrypt, if the input length is 0 (which
is unusual and mostly useless, but permitted) then it is fine for the
input pointer to be NULL. Don't return an error in this case.
When `input` is NULL, `memcpy( p, input, ilen )` has undefined behavior
even if `ilen` is zero. So skip the `memcpy` call in this case.
Likewise, in `mbedtls_rsa_rsaes_oaep_decrypt`, skip the `memcpy` call if
`*olen` is zero.
Context: During a handshake, the SSL/TLS handshake logic constructs
an instance of ::mbedtls_ssl_session representing the SSL session
being established. This structure contains information such as the
session's master secret, the peer certificate, or the session ticket
issues by the server (if applicable).
During a renegotiation, the new session is constructed aside the existing
one and destroys and replaces the latter only when the renegotiation is
complete. While conceptually clear, this means that during the renegotiation,
large pieces of information such as the peer's CRT or the session ticket
exist twice in memory, even though the original versions are removed
eventually.
This commit removes the simultaneous presence of two peer CRT chains
in memory during renegotiation, in the following way:
- Unlike in the case of SessionTickets handled in the previous commit,
we cannot simply free the peer's CRT chain from the previous handshake
before parsing the new one, as we need to verify that the peer's end-CRT
hasn't changed to mitigate the 'Triple Handshake Attack'.
- Instead, we perform a binary comparison of the original peer end-CRT
with the one presented during renegotiation, and if it succeeds, we
avoid re-parsing CRT by moving the corresponding CRT pointer from the
old to the new session structure.
- The remaining CRTs in the peer's chain are not affected by the triple
handshake attack protection, and for them we may employ the canonical
approach of freeing them before parsing the remainder of the new chain.
Note that this commit intends to not change any observable behavior
of the stack. In particular:
- The peer's CRT chain is still verified during renegotiation.
- The tail of the peer's CRT chain may change during renegotiation.
Context: During a handshake, the SSL/TLS handshake logic constructs
an instance of ::mbedtls_ssl_session representing the SSL session
being established. This structure contains information such as the
session's master secret, the peer certificate, or the session ticket
issues by the server (if applicable).
During a renegotiation, the new session is constructed aside the existing
one and destroys and replaces the latter only when the renegotiation is
complete. While conceptually clear, this means that during the renegotiation,
large pieces of information such as the peer's CRT or the session ticket
exist twice in memory, even though the original versions are removed
eventually.
This commit starts removing this memory inefficiency by freeing the old
session's SessionTicket before the one for the new session is allocated.
Context:
The existing API `mbedtls_x509_parse_crt_der()` for parsing DER
encoded X.509 CRTs unconditionally makes creates a copy of the
input buffer in RAM. While this comes at the benefit of easy use,
-- specifically: allowing the user to free or re-use the input
buffer right after the call -- it creates a significant memory
overhead, as the CRT is duplicated in memory (at least temporarily).
This might not be tolerable a resource constrained device.
As a remedy, this commit adds a new X.509 API call
`mbedtls_x509_parse_crt_der_nocopy()`
which has the same signature as `mbedtls_x509_parse_crt_der()`
and almost the same semantics, with one difference: The input
buffer must persist and be unmodified for the lifetime of the
established instance of `mbedtls_x509_crt`, that is, until
`mbedtls_x509_crt_free()` is called.
Resolve incompatibilties in the RSA module where changes made for
parameter validation prevent Mbed Crypto from working. Mbed Crypto
depends on being able to pass zero-length buffers that are NULL to RSA
encryption functions.
This reverts commit 2f660d047d.
After merging the latest RSA implementation from Mbed TLS, we have a
regression in that we no longer properly handle zero-length null output
in PKCS1 v1.5 decryption. Prevent undefined behavior by avoiding a
memcpy() to zero-length null output buffers.
Merge a development version of Mbed TLS 2.16.0 that doesn't have
parameter validation into development.
The following conflicts were resolved:
- Update ChangeLog to include release notes merged from development so
far, with a version of "2.14.0+01b34fb316a5" and release date of
"xxxx-xx-xx" to show this is not a released version, but instead a
snapshot of the development branch equivalent to version of the 2.14.0
with additional commits from the mbedtls/development branch up through
01b34fb316 included. Entries added for unreleased versions of Mbed
Crypto remain at the top of the file for Mbed TLS 2.xx.x.
- Replace the Mbed Crypto version of
mbedtls_rsa_rsaes_pkcs1_v15_decrypt() with the version from Mbed TLS
which fixes timing variations and memory access variations that could
lead to a Bleichenbacher-style padding oracle attack. This will
prevent using psa_asymmetric_decrypt() with zero-length output buffers
until a follow up commit is made to restore this capability.
- In ssl_srv.c, include changes for both the new ECDH interface and
opaque PSK as already added to development previously.
Context: There are two public key writing functions in Mbed TLS. First,
mbedtls_pk_write_pubkey(), which exports a public key in the form of a
SubjectPublicKey structure containing the raw keying material
(for example, EC point coordinates for an EC public key, without
reference to the underlying curve). Secondly, mbedtls_pk_write_pubkey_der(),
which exports a public key in the form of a SubjectPublicKeyInfo structure,
wrapping the SubjectPublicKey structure by additional information
identifying the type of public key (and for ECC, e.g., it'd also contain
the ECC group identifier). The implementation of mbedtls_pk_write_pubkey_der()
calls mbedtls_pk_write_pubkey() first and then adds the corresponding
algorithm identifier wrapper.
Both of these functions need to be provided for PSA-based opaque PK contexts,
based on PSA's public key export function.
Previously, PSA used the SubjectPublicKeyInfo structure as its export format,
so mbedtls_pk_write_pubkey_der() could be easily implemented, while
mbedtls_pk_write_pubkey() would need to trim the output of the PSA export.
The previous implementation of mbedtls_pk_write_pubkey() is not quite right
because it calls PSA export doesn't do any trimming, hence exporting the large
SubjectPublicKeyInfo structure instead of the small SubjectPublicKey.
mbedtls_pk_write_pubkey_der(), in turn, immediately returns after calling
mbedtls_pk_write_pubkey(), hence also returning the SubjectPublicKeyInfo
structure, which is correct.
By now, the PSA public key export format has changed to the smaller
SubjectPublicKey structure. This means that, now, mbedtls_pk_write_pubkey()
can be implemented by just calling the PSA export, and that
mbedtls_pk_write_pubkey_der() needs to add the algorithm information around
it, just as in the other types of PK contexts. While not correct for the
old format, the existing code for mbedtls_pk_write_pubkey() is therefore
correct for the new PSA public key format, and needs no change apart from
the missing pointer shift in the last commit.
The implementation of mbedtls_pk_write_pubkey_der() needs a special code
path for PSA-based opaque PK contexts, as the PK context only contains
the PSA key handle, and the PSA API needs to be used to extract the
underlying EC curve to be able to write the AlgorithmParameter structure
that's part of the SubjectPublicKeyInfo structure.
That's what this commit does, (hopefully) making both
mbedtls_pk_write_pubkey() and mbedtls_pk_write_pubkey_der() export
the correctly formatted public key based on the new PSA public key format.
Context: There are two public key writing functions in Mbed TLS. First,
mbedtls_pk_write_pubkey(), which exports a public key in the form of a
SubjectPublicKey structure containing the raw keying material
(for example, EC point coordinates for an EC public key, without
reference to the underlying curve). Secondly, mbedtls_pk_write_pubkey_der(),
which exports a public key in the form of a SubjectPublicKeyInfo structure,
wrapping the SubjectPublicKey structure by additional information
identifying the type of public key (and for ECC, e.g., it'd also contain
the ECC group identifier). The implementation of mbedtls_pk_write_pubkey_der()
calls mbedtls_pk_write_pubkey() first and then adds the corresponding
algorithm identifier wrapper.
Both of these functions need to be provided for PSA-based opaque PK contexts,
based on PSA's public key export function.
Previously, PSA used the SubjectPublicKeyInfo structure as its export format,
so mbedtls_pk_write_pubkey_der() could be easily implemented, while
mbedtls_pk_write_pubkey() would need to trim the output of the PSA export.
The previous implementation of mbedtls_pk_write_pubkey() is not quite right
because it calls PSA export doesn't do any trimming, hence exporting the large
SubjectPublicKeyInfo structure instead of the small SubjectPublicKey.
mbedtls_pk_write_pubkey_der(), in turn, immediately returns after calling
mbedtls_pk_write_pubkey(), hence also returning the SubjectPublicKeyInfo
structure, which is correct.
By now, the PSA public key export format has changed to the smaller
SubjectPublicKey structure. This means that, now, mbedtls_pk_write_pubkey()
can be implemented by just calling the PSA export, and that
mbedtls_pk_write_pubkey_der() needs to add the algorithm information around
it, just as in the other types of PK contexts. While not correct for the
old format, the existing code for mbedtls_pk_write_pubkey() is therefore
correct for the new PSA public key format, and needs no change apart from
the missing pointer shift in the last commit.
The implementation of mbedtls_pk_write_pubkey_der() needs a special code
path for PSA-based opaque PK contexts, as the PK context only contains
the PSA key handle, and the PSA API needs to be used to extract the
underlying EC curve to be able to write the AlgorithmParameter structure
that's part of the SubjectPublicKeyInfo structure.
That's what this commit does, (hopefully) making both
mbedtls_pk_write_pubkey() and mbedtls_pk_write_pubkey_der() export
the correctly formatted public key based on the new PSA public key format.
In mbedtls_mpi_exp_mod(), the limit check on wsize is never true when
MBEDTLS_MPI_WINDOW_SIZE is at least 6. Wrap in a preprocessor guard
to remove the dead code and resolve a Coverity finding from the
DEADCODE checker.
Change-Id: Ice7739031a9e8249283a04de11150565b613ae89
Additional changes to temporarily enable running tests:
ssl_srv.c and test_suite_ecdh use mbedtls_ecp_group_load instead of
mbedtls_ecdh_setup
test_suite_ctr_drbg uses mbedtls_ctr_drbg_update instead of
mbedtls_ctr_drbg_update_ret
Previously, PSA used SubjectPublicKeyInfo structures to serialize EC public keys.
This has recently been changed to using ECPoint structures instead, but the wrapper
making PSA ECDSA verification available through Mbed TLS' PK API hasn't yet been
adapted accordingly - which is what this commit does.
Luckily, Mbed TLS' PK API offers two functions mbedtls_pk_write_pubkey()
and mbedtls_pk_write_pubkey_der(), the latter exporting a SubjectPublicKeyInfo
structure and the former exporting an ECPoint structure in case of EC public
keys. For the adaptation of the ECDSA wrapper ecdsa_verify_wrap() it is therefore
sufficient to use mbedtls_pk_write_pubkey() instead of mbedtls_pk_write_pubkey_der().
Previously, PSA used SubjectPublicKeyInfo structures to serialize EC public keys.
This has recently been changed to using ECPoint structures instead, but the wrapper
making PSA ECDSA verification available through Mbed TLS' PK API hasn't yet been
adapted accordingly - which is what this commit does.
Luckily, Mbed TLS' PK API offers two functions mbedtls_pk_write_pubkey()
and mbedtls_pk_write_pubkey_der(), the latter exporting a SubjectPublicKeyInfo
structure and the former exporting an ECPoint structure in case of EC public
keys. For the adaptation of the ECDSA wrapper ecdsa_verify_wrap() it is therefore
sufficient to use mbedtls_pk_write_pubkey() instead of mbedtls_pk_write_pubkey_der().
The file oid.c had conditional inclusion of functions based on a config.h
define that belongs to X.509, which is backwards. For now, just include those
functions unconditionally and rely on the linker to garbage-collect them if
not used.
In the longer term X.509-specific functions are likely to be removed from
libmbedcrypto, but at this step the goal is to preserve the API (and even ABI)
of libmbedcrypto for as long as possible while separating the source trees of
Mbed Crypto and Mbed TLS.
As agreed during the workshop, temporarily move definitions to oid.h even if
they might not semantically belong here, as a short-term measure allowing to
build libmbecrypto on its own (without X.509 files present in the source tree)
but still provide all the things Mbed TLS currently expects, and more
specifically preserve the API and ABI exposed by libmbedtls.
Remove extra status handling code from psa_import_key_into_slot(). This
helps save a tiny amount of code space, but mainly serves to improve the
readability of the code.
Move pk-using code to inside psa_import_rsa_key(). This aligns the shape
of psa_import_rsa_key() to match that of psa_import_ec_private_key() and
psa_import_ec_public_key().
Remove front matter from our EC key format, to make it just the contents
of an ECPoint as defined by SEC1 section 2.3.3.
As a consequence of the simplification, remove the restriction on not
being able to use an ECDH key with ECDSA. There is no longer any OID
specified when importing a key, so we can't reject importing of an ECDH
key for the purpose of ECDSA based on the OID.
Use the PSA-native status type in psa_key_agreement_ecdh() in
preparation for us calling PSA functions (and not just Mbed TLS
functions) and still being able to return a psa_status_t (without having
to translate it to a Mbed TLS error and then back again).
Remove pkcs-1 and rsaEncryption front matter from RSA public keys. Move
code that was shared between RSA and other key types (like EC keys) to
be used only with non-RSA keys.
Remove the type and bits arguments to psa_allocate_key() and
psa_create_key(). They can be useful if the implementation wants to
know exactly how much space to allocate for the slot, but many
implementations (including ours) don't care, and it's possible to work
around their lack by deferring size-dependent actions to the time when
the key material is created. They are a burden to applications and
make the API more complex, and the benefits aren't worth it.
Change the API and adapt the implementation, the units test and the
sample code accordingly.
Add a new function mbedtls_asn1_write_named_bitstring() that removes
trailing 0s at the end of DER encoded bitstrings. The function is
implemented according to Hanno Becker's suggestions.
This commit also changes the functions x509write_crt_set_ns_cert_type
and crt_set_key_usage to call the new function as the use named
bitstrings instead of the regular bitstrings.
When MBEDTLS_PSA_CRYPTO_SPM is defined, the code is being built for SPM (Secure Partition Manager)
integration which separates the code into two parts: NSPE (Non-Secure Processing Environment) and SPE
(Secure Processing Environment). When building for the SPE, an additional header file should be included.
You can use PSA_ALG_ANY_HASH to build the algorithm value for a
hash-and-sign algorithm in a policy. Then the policy allows usage with
this hash-and-sign family with any hash.
Test that PSA_ALG_ANY_HASH-based policies allow a specific hash, but
not a different hash-and-sign family. Test that PSA_ALG_ANY_HASH is
not valid for operations, only in policies.
Previously we weren't initializing the freshly allocated ECP keypair
when importing private EC keys. This didn't seem to cause problems, at
least according to our current test coverage, but it's better to ensure
we don't have a partially initialized object by explicitly initializing
the keypair.
Return the error code if failed, instead of returning value `1`.
If not failed, return the call of the underlying function,
in `mbedtls_ecdsa_genkey()`.
Use `cmake -D CMAKE_BUILD_TYPE=Asan` rather than manually setting
`-fsanitize=address`. This lets cmake determine the necessary compiler
and linker flags.
With UNSAFE_BUILD on, force -Wno-error. This is necessary to build
with MBEDTLS_TEST_NULL_ENTROPY.
Use `cmake -D CMAKE_BUILD_TYPE=Asan` rather than manually setting
`-fsanitize=address`. This lets cmake determine the necessary compiler
and linker flags.
With UNSAFE_BUILD on, force -Wno-error. This is necessary to build
with MBEDTLS_TEST_NULL_ENTROPY.
Add new initializers for key policies and use them in our docs, example
programs, tests, and library code. Prefer using the macro initializers
due to their straightforwardness.
mbedtls_mpi_read_binary() calls memcpy() with the source pointer being
the source pointer passed to mbedtls_mpi_read_binary(), the latter may
be NULL if the buffer length is 0 (and this happens e.g. in the ECJPAKE
test suite). The behavior of memcpy(), in contrast, is undefined when
called with NULL source buffer, even if the length of the copy operation
is 0.
This commit fixes this by explicitly checking that the source pointer is
not NULL before calling memcpy(), and skipping the call otherwise.
Context: The function `mbedtls_mpi_fill_random()` uses a temporary stack
buffer to hold the random data before reading it into the target MPI.
Problem: This is inefficient both computationally and memory-wise.
Memory-wise, it may lead to a stack overflow on constrained devices with
limited stack.
Fix: This commit introduces the following changes to get rid of the
temporary stack buffer entirely:
1. It modifies the call to the PRNG to output the random data directly
into the target MPI's data buffer.
This alone, however, constitutes a change of observable behaviour:
The previous implementation guaranteed to interpret the bytes emitted by
the PRNG in a big-endian fashion, while rerouting the PRNG output into the
target MPI's limb array leads to an interpretation that depends on the
endianness of the host machine.
As a remedy, the following change is applied, too:
2. Reorder the bytes emitted from the PRNG within the target MPI's
data buffer to ensure big-endian semantics.
Luckily, the byte reordering was already implemented as part of
`mbedtls_mpi_read_binary()`, so:
3. Extract bigendian-to-host byte reordering from
`mbedtls_mpi_read_binary()` to a separate internal function
`mpi_bigendian_to_host()` to be used by `mbedtls_mpi_read_binary()`
and `mbedtls_mpi_fill_random()`.
The calls to cipher_finish didn't actually do anything:
- the cipher mode is always ECB
- in that case cipher_finish() only sets *olen to zero, and returns either 0
or an error depending on whether there was pending data
- olen is a local variable in the caller, so setting it to zero right before
returning is not essential
- the return value of cipher_finis() was not checked by the caller so that's
not useful either
- the cipher layer does not have ALT implementations so the behaviour
described above is unconditional on ALT implementations (in particular,
cipher_finish() can't be useful to hardware as (with ECB) it doesn't call any
functions from lower-level modules that could release resources for example)
Since the calls are causing issues with parameter validation, and were no
serving any functional purpose, it's simpler to just remove them.
Somehow, mbedtls_sha256_ret() is defined even if MBEDTLS_SHA256_ALT
is set, and it is using SHA256_VALIDATE_RET. The documentation should
be enhanced to indicate that MBEDTLS_SHA256_ALT does _not_ replace
the entire module, but only the core SHA-256 functions.