“Prior to Mbed TLS 2.24” suggests that 2.24 itself didn't use the old
policy anymore, but it did. Change to “Until”, and also give the exact
version number “2.24.0”.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
In psa_generate_key_internal() for ECC keys, remove the check that the
bit-size according to Mbed TLS is equal to the requested bit-size.
This check was necessary back when the PSA API encoded curves and key
sizes independently, in order to reject combinations such as SECP256R1
with a 512-bit size. Since the curve encoding changed to specifying a
curve family and a size separately, the Mbed TLS curve id (grp_id) and
the curve data (curve_info) are now determined from the size, and
checking that (curve_info->bit_size == bits) is now only a redundant
sanity check.
This check is actually buggy, because PSA Crypto and Mbed TLS don't
have exactly the same notion of key size. PSA thinks Curve25519 is
255-bit and secp224k1 is 225-bit, but Mbed TLS thinks they're 256-bit
and 224-bit respectively. Removing the check allows key generation to
work for these curves.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
mbedtls_ecp_curve_list() now lists Curve25519 and Curve448 under the names
"x25519" and "x448". These curves support ECDH but not ECDSA.
This was meant ever since the introduction of mbedtls_ecdsa_can_do()
in 0082f9df6f, but
2c69d10bac had removed the claim
that Montgomery curves support ECDH except through Everest.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
Test import and key generation, each followed by a key agreement. Only
good cases in this commit.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
... as opposed to PSA_ERROR_BAD_STATE.
The spec on psa_cipher_finish() states that PSA_ERROR_INVALID_ARGUMENT
should be returned when:
"The total input size passed to this operation is not valid for this
particular algorithm. For example, the algorithm is a based on block
cipher and requires a whole number of blocks, but the total input size
is not a multiple of the block size."
Currently, there is a distinction between encryption and decryption
on whether INVALID_ARGUMENT or BAD_STATE is returned, but this is not
a part of the spec.
This fix ensures that PSA_ERROR_INVALID_ARGUMENT is returned
consistently on invalid cipher input sizes.
Signed-off-by: Fredrik Strupe <fredrik.strupe@silabs.com>
From now on, external contributions are no longer acknowledged in the
changelog file. They of course remain acknowledged in the Git history.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
Starting with commit 49e94e3, the do/while loop in
`rsa_prepare_blinding()` was changed to a `do...while(0)`, which
prevents retry from being effective and leaves dead code.
Restore the while condition to retry, and lift the calls to finish the
computation out of the while loop by by observing that they are
performed only when `mbedtls_mpi_inv_mod()` returns zero.
Signed-off-by: Peter Kolbus <peter.kolbus@garmin.com>
Python should not be required for the build when the no_test target is
used. This commit adds the generated file to the source tree and the
check-generated-files script, and removes the generation from (c)make.
Fixes#3524
Signed-off-by: Cameron Nemo <cnemo@tutanota.com>
The toplevel directory is actually just ../..: the makefile commands
are executed in the subdirectory. $(PWD) earlier was wrong because it
comes from the shell, not from make. Looking up $(MAKEFILE_LIST) is
wrong because it indicates where the makefile is (make -f), not which
directory to work in (make -C).
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
According to https://www.bearssl.org/ctmul.html even single-precision
multiplication is not constant-time on some older platforms.
An added benefit of the new code is that it removes the somewhat mysterious
constant 0x1ff - which was selected because at that point the maximum value of
padlen was 256. The new code is perhaps a bit more readable for that reason.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
The previous code used comparison operators >= and == that are quite likely to
be compiled to branches by some compilers on some architectures (with some
optimisation levels).
For example, take the following function:
void old_update( size_t data_len, size_t *padlen )
{
*padlen *= ( data_len >= *padlen + 1 );
}
With Clang 3.8, let's compile it for the Arm v6-M architecture:
% clang --target=arm-none-eabi -march=armv6-m -Os foo.c -S -o - |
sed -n '/^old_update:$/,/\.size/p'
old_update:
.fnstart
@ BB#0:
.save {r4, lr}
push {r4, lr}
ldr r2, [r1]
adds r4, r2, #1
movs r3, #0
cmp r4, r0
bls .LBB0_2
@ BB#1:
mov r2, r3
.LBB0_2:
str r2, [r1]
pop {r4, pc}
.Lfunc_end0:
.size old_update, .Lfunc_end0-old_update
We can see an unbalanced secret-dependant branch, resulting in a total
execution time depends on the value of the secret (here padlen) in a
straightforward way.
The new version, based on bit operations, doesn't have this issue:
new_update:
.fnstart
@ BB#0:
ldr r2, [r1]
subs r0, r0, #1
subs r0, r0, r2
asrs r0, r0, #31
bics r2, r0
str r2, [r1]
bx lr
.Lfunc_end1:
.size new_update, .Lfunc_end1-new_update
(As a bonus, it's smaller and uses less stack.)
While there's no formal guarantee that the version based on bit operations in
C won't be translated using branches by the compiler, experiments tend to show
that's the case [1], and it is commonly accepted knowledge in the practical
crypto community that if we want to sick to C, bit operations are the safest
bet [2].
[1] https://github.com/mpg/ct/blob/master/results
[2] https://github.com/veorq/cryptocoding
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Move key identifier related macros and functions from
crypto_types.h to crypto_values.h as the latter is
the intended file to put them in.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
No obvious reason to not enable owner identifier encoding
in baremetal as multi-client support is expected to be needed
for some embedded platforms. Thus enable it.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
* Reworked the cipher context once again to be more robustly defined
* Removed redundant memset
* Unified behaviour on failure between driver and software in cipher_finish
* Cipher test driver setup function now also returns early when its status
is overridden, like the other test driver functions
* Removed redundant test cases
* Added bad-order checking to verify the driver doesn't get called where
the spec says it won't.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
As pointed out by Ronald. The key slot is populated using
get_key_from_slot, and after calling the driver the slot is
validated to not contain an external key, so calling
get_transparent_key is superfluous.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
Added zeroization of the wrapper context on failure/abort, and reliance on
the crypto core to not call an uninitialised wrapper.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>