It's better for names in the API to describe the "what" (opaque keys) rather
than the "how" (using PSA), at least since we don't intend to have multiple
function doing the same "what" in different ways in the foreseeable future.
Unfortunately the can_do wrapper does not receive the key context as an
argument, so it cannot check psa_get_key_information(). Later we might want to
change our internal structures to fix this, but for now we'll just restrict
opaque PSA keys to be ECDSA keypairs, as this is the only thing we need for
now. It also simplifies testing a bit (no need to test each key type).
While at it, clarify who's responsible for destroying the underlying key. That
can't be us because some keys cannot be destroyed and we wouldn't know. So
let's leave that up to the caller.
So far, make sure we test the following ciphersuites
without any fallback to non-PSA ciphers:
TLS-ECDHE-ECDSA-WITH-AES-128-CCM
TLS-ECDHE-ECDSA-WITH-AES-128-CCM-8
TLS-ECDHE-ECDSA-WITH-AES-256-CCM
TLS-ECDHE-ECDSA-WITH-AES-256-CCM-8
TLS-ECDHE-ECDSA-WITH-AES-128-GCM-SHA256
TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384
TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA
TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA256
TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA384
Previously, command line arguments `psk_slot` and `psk_list_slot`
could be used to indicate the PSA key slots that the example
applications should use to store the PSK(s) provided.
This commit changes this approach to use the utility function
`mbedtls_psa_get_free_key_slot()` to obtain free key slots from
the PSA Crypto implementation automatically, so that users only
need to pass boolean flags `psk_opaque` and `psk_list_opaque`
on the command line to enable / disable PSA-based opaque PSKs.
The test suites `test_suite_gcm.aes{128,192,256}_en.data` contains
numerous NIST test vectors for AES-*-GCM against which the GCM
API mbedtls_gcm_xxx() is tested.
However, one level higher at the cipher API, no tests exist which
exercise mbedtls_cipher_auth_{encrypt/decrypt}() for GCM ciphers,
although test_suite_cipher.function contains the test auth_crypt_tv
which does precisely that and is already used e.g. in
test_suite_cipher.ccm.
This commit replicates the test vectors from
test_suite_gcm.aes{128,192,256}_en.data in test_suite_cipher.gcm.data
and adds a run of auth_crypt_tv for each of them.
The conversion was mainly done through the sed command line
```
s/gcm_decrypt_and_verify:\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):
\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\)/auth_crypt_tv:
\1:\2:\4:\5:\3:\7:\8:\9/
```
Allow use of persistent keys, including configuring them, importing and
exporting them, and destroying them.
When getting a slot using psa_get_key_slot, there are 3 scenarios that
can occur if the keys lifetime is persistent:
1. Key type is PSA_KEY_TYPE_NONE, no persistent storage entry:
- The key slot is treated as a standard empty key slot
2. Key type is PSA_KEY_TYPE_NONE, persistent storage entry exists:
- Attempt to load the key from persistent storage
3. Key type is not PSA_KEY_TYPE_NONE:
- As checking persistent storage on every use of the key could
be expensive, the persistent key is assumed to be saved in
persistent storage, the in-memory key is continued to be used.
Add new functions, psa_load_persistent_key(),
psa_free_persistent_key_data(), and psa_save_persistent_key(), for
managing persistent keys. These functions load to or save from our
internal representation of key slots. Serialization is a concern of the
storage backend implementation and doesn't abstraction-leak into the
lifetime management code.
An initial implementation for files is provided. Additional storage
backends can implement this interface for other storage types.
The persistent key implementation will be split across multiple
files as it will eventually be implementing multiple storage
backends. As these internal functions will need to be callable by
other files, we will add the headers in the library folder. This
commit adds this include location to the necessary scripts.
For tests, the library is added as an include location as testing
on-target with Mbed OS is not possible with paths including ".."
This commit adds the default upstream configuration to the set of
tests we run on CI, which was long overdue.
config-default is a copy of the Mbed TLS upstream config.h. It's
useful for two things: to compare our local changes to
include/mbedtls/config.h, and to test that we aren't breaking the
default upstream configuration.
Run a subset of the TLS tests that focus on exercising cryptographic
algorithms as used from TLS. Don't run the full set of TLS tests
because they're unlikely to be affected by changes in the PSA branch.
Mbed TLS version 2.14.0
Resolved conflicts in include/mbedtls/config.h,
tests/scripts/check-files.py, and yotta/create-module.sh by removing yotta.
Resolved conflicts in tests/.jenkins/Jenkinsfile by continuing to run
mbedtls-psa job.