Merge pull request #6918 from yuhaoth/pr/add-gcm-with-armv8-crypto-extension

Add GCM  with armv8 crypto extension
This commit is contained in:
Dave Rodgman 2023-03-20 14:45:14 +00:00 committed by GitHub
commit c5807a6fa8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 169 additions and 5 deletions

View file

@ -212,14 +212,14 @@ static void aesce_setkey_enc(unsigned char *rk,
0x20, 0x40, 0x80, 0x1b, 0x36 };
/* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
* - Section 5, Nr = Nk + 6
* - Section 5.2, the key expansion size is Nb*(Nr+1)
* - Section 5.2, the length of round keys is Nb*(Nr+1)
*/
const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
const size_t round_key_len_in_words = 4; /* Nb */
const size_t round_keys_needed = key_len_in_words + 6; /* Nr */
const size_t key_expansion_size_in_words =
round_key_len_in_words * (round_keys_needed + 1); /* Nb*(Nr+1) */
const uint32_t *rko_end = (uint32_t *) rk + key_expansion_size_in_words;
const size_t rounds_needed = key_len_in_words + 6; /* Nr */
const size_t round_keys_len_in_words =
round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
memcpy(rk, key, key_len_in_words * 4);
@ -276,6 +276,126 @@ int mbedtls_aesce_setkey_enc(unsigned char *rk,
return 0;
}
#if defined(MBEDTLS_GCM_C)
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
/* Some intrinsics are not available for GCC 5.X. */
#define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
static inline poly64_t vget_low_p64(poly64x2_t __a)
{
uint64x2_t tmp = (uint64x2_t) (__a);
uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
return (poly64_t) (lo);
}
#endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
/* vmull_p64/vmull_high_p64 wrappers.
*
* Older compilers miss some intrinsic functions for `poly*_t`. We use
* uint8x16_t and uint8x16x3_t as input/output parameters.
*/
static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
{
return vreinterpretq_u8_p128(
vmull_p64(
(poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
(poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))));
}
static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
{
return vreinterpretq_u8_p128(
vmull_high_p64(vreinterpretq_p64_u8(a),
vreinterpretq_p64_u8(b)));
}
/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
* `x^128 + x^7 + x^2 + x + 1`.
*
* Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
* multiplies to generate a 128b.
*
* `poly_mult_128` executes polynomial multiplication and outputs 256b that
* represented by 3 128b due to code size optimization.
*
* Output layout:
* | | | |
* |------------|-------------|-------------|
* | ret.val[0] | h3:h2:00:00 | high 128b |
* | ret.val[1] | :m2:m1:00 | middle 128b |
* | ret.val[2] | : :l1:l0 | low 128b |
*/
static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
{
uint8x16x3_t ret;
uint8x16_t h, m, l; /* retval high/middle/low */
uint8x16_t c, d, e;
h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
ret.val[0] = h;
ret.val[1] = m;
ret.val[2] = l;
return ret;
}
/*
* Modulo reduction.
*
* See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
*
* Section 4.3
*
* Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
* z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
* consider that z^128 r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
* operand to be reduced as a(z) = h(z)z^128 +l(z)h(z)r(z) + l(z). That is, we
* simply multiply the higher part of the operand by r(z) and add it to l(z). If
* the result is still larger than 128 bits, we reduce again.
*/
static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
{
uint8x16_t const ZERO = vdupq_n_u8(0);
/* use 'asm' as an optimisation barrier to prevent loading MODULO from memory */
uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
asm ("" : "+w" (r));
uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
uint8x16_t h, m, l; /* input high/middle/low 128b */
uint8x16_t c, d, e, f, g, n, o;
h = input.val[0]; /* h3:h2:00:00 */
m = input.val[1]; /* :m2:m1:00 */
l = input.val[2]; /* : :l1:l0 */
c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
return veorq_u8(o, g); /* = o1:o0 + g1:00 */
}
/*
* GCM multiplication: c = a times b in GF(2^128)
*/
void mbedtls_aesce_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
uint8x16_t va, vb, vc;
va = vrbitq_u8(vld1q_u8(&a[0]));
vb = vrbitq_u8(vld1q_u8(&b[0]));
vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
vst1q_u8(&c[0], vc);
}
#endif /* MBEDTLS_GCM_C */
#if defined(MBEDTLS_POP_TARGET_PRAGMA)
#if defined(__clang__)

View file

@ -64,6 +64,24 @@ int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16]);
/**
* \brief Internal GCM multiplication: c = a * b in GF(2^128)
*
* \note This function is only for internal use by other library
* functions; you must not call it directly.
*
* \param c Result
* \param a First operand
* \param b Second operand
*
* \note Both operands and result are bit strings interpreted as
* elements of GF(2^128) as per the GCM spec.
*/
void mbedtls_aesce_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16]);
/**
* \brief Internal round key inversion. This function computes
* decryption round keys from the encryption round keys.

View file

@ -42,6 +42,10 @@
#include "aesni.h"
#endif
#if defined(MBEDTLS_AESCE_C)
#include "aesce.h"
#endif
#if !defined(MBEDTLS_GCM_ALT)
/*
@ -93,6 +97,12 @@ static int gcm_gen_table(mbedtls_gcm_context *ctx)
}
#endif
#if defined(MBEDTLS_AESCE_C) && defined(MBEDTLS_HAVE_ARM64)
if (mbedtls_aesce_has_support()) {
return 0;
}
#endif
/* 0 corresponds to 0 in GF(2^128) */
ctx->HH[0] = 0;
ctx->HL[0] = 0;
@ -187,6 +197,7 @@ static void gcm_mult(mbedtls_gcm_context *ctx, const unsigned char x[16],
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
unsigned char h[16];
/* mbedtls_aesni_gcm_mult needs big-endian input */
MBEDTLS_PUT_UINT32_BE(ctx->HH[8] >> 32, h, 0);
MBEDTLS_PUT_UINT32_BE(ctx->HH[8], h, 4);
MBEDTLS_PUT_UINT32_BE(ctx->HL[8] >> 32, h, 8);
@ -197,6 +208,21 @@ static void gcm_mult(mbedtls_gcm_context *ctx, const unsigned char x[16],
}
#endif /* MBEDTLS_AESNI_C && MBEDTLS_HAVE_X86_64 */
#if defined(MBEDTLS_AESCE_C) && defined(MBEDTLS_HAVE_ARM64)
if (mbedtls_aesce_has_support()) {
unsigned char h[16];
/* mbedtls_aesce_gcm_mult needs big-endian input */
MBEDTLS_PUT_UINT32_BE(ctx->HH[8] >> 32, h, 0);
MBEDTLS_PUT_UINT32_BE(ctx->HH[8], h, 4);
MBEDTLS_PUT_UINT32_BE(ctx->HL[8] >> 32, h, 8);
MBEDTLS_PUT_UINT32_BE(ctx->HL[8], h, 12);
mbedtls_aesce_gcm_mult(output, x, h);
return;
}
#endif
lo = x[15] & 0xf;
zh = ctx->HH[lo];