Change signature of mbedtls_rsa_deduce_private
Make input arguments constant and adapt the implementation to use a temporary instead of in-place operations.
This commit is contained in:
parent
ba5b755f1a
commit
bdefff1dde
3 changed files with 19 additions and 26 deletions
|
@ -122,18 +122,11 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi const *N, mbedtls_mpi const *D,
|
|||
* \return
|
||||
* - 0 if successful. In this case, D is set to a simultaneous
|
||||
* modular inverse of E modulo both P-1 and Q-1.
|
||||
* - A non-zero error code otherwise. In this case, the values
|
||||
* of P, Q, E are undefined.
|
||||
* - A non-zero error code otherwise.
|
||||
*
|
||||
* \note The input MPI's are deliberately not declared as constant
|
||||
* and may therefore be used for in-place calculations by
|
||||
* the implementation. In particular, their values can be
|
||||
* corrupted when the function fails. If the user cannot
|
||||
* tolerate this, he has to make copies of the MPI's prior
|
||||
* to calling this function. See \c mbedtls_mpi_copy for this.
|
||||
*/
|
||||
int mbedtls_rsa_deduce_private( mbedtls_mpi *P, mbedtls_mpi *Q, mbedtls_mpi *E,
|
||||
mbedtls_mpi *D );
|
||||
int mbedtls_rsa_deduce_private( mbedtls_mpi const *P, mbedtls_mpi const *Q,
|
||||
mbedtls_mpi const *E, mbedtls_mpi *D );
|
||||
|
||||
|
||||
/**
|
||||
|
|
|
@ -252,11 +252,13 @@ cleanup:
|
|||
* This is essentially a modular inversion.
|
||||
*/
|
||||
|
||||
int mbedtls_rsa_deduce_private( mbedtls_mpi *P, mbedtls_mpi *Q,
|
||||
mbedtls_mpi *D, mbedtls_mpi *E )
|
||||
int mbedtls_rsa_deduce_private( mbedtls_mpi const *P,
|
||||
mbedtls_mpi const *Q,
|
||||
mbedtls_mpi const *E,
|
||||
mbedtls_mpi *D )
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi K;
|
||||
mbedtls_mpi K, L;
|
||||
|
||||
if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
|
||||
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
||||
|
@ -269,28 +271,26 @@ int mbedtls_rsa_deduce_private( mbedtls_mpi *P, mbedtls_mpi *Q,
|
|||
}
|
||||
|
||||
mbedtls_mpi_init( &K );
|
||||
mbedtls_mpi_init( &L );
|
||||
|
||||
/* Temporarily replace P and Q by P-1 and Q-1, respectively. */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( P, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( Q, Q, 1 ) );
|
||||
/* Temporarily put K := P-1 and L := Q-1 */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
|
||||
|
||||
/* Temporarily compute the gcd(P-1, Q-1) in D. */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, P, Q ) );
|
||||
/* Temporarily put D := gcd(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
|
||||
|
||||
/* Compute LCM(P-1, Q-1) in K */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
|
||||
/* K := LCM(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
|
||||
|
||||
/* Compute modular inverse of E in LCM(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
|
||||
|
||||
/* Restore P and Q. */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( P, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( Q, Q, 1 ) );
|
||||
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free( &K );
|
||||
mbedtls_mpi_free( &L );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
@ -664,7 +664,7 @@ int mbedtls_rsa_complete( mbedtls_rsa_context *ctx,
|
|||
* so together with the primality test above all core parameters are
|
||||
* guaranteed to be sane if this call succeeds. */
|
||||
if( ( ret = mbedtls_rsa_deduce_private( &ctx->P, &ctx->Q,
|
||||
&ctx->D, &ctx->E ) ) != 0 )
|
||||
&ctx->E, &ctx->D ) ) != 0 )
|
||||
{
|
||||
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
||||
}
|
||||
|
|
|
@ -804,7 +804,7 @@ void mbedtls_rsa_deduce_private( int radix_P, char *input_P,
|
|||
}
|
||||
|
||||
/* Try to deduce D from N, P, Q, E. */
|
||||
TEST_ASSERT( mbedtls_rsa_deduce_private( &P, &Q, &D, &E ) == result );
|
||||
TEST_ASSERT( mbedtls_rsa_deduce_private( &P, &Q, &E, &D ) == result );
|
||||
|
||||
if( !corrupt )
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue