Bignum: Apply naming conventions

Numbers:

- A, B for mbedtls_mpi_uint* operands
- a, b for mbedtls_mpi_uint operands
- X or x for result
- HAC references where applicable

Lengths:

- Reserve size or length for length/size in bytes or byte buffers.
- For length of mbedtls_mpi_uint* buffers use limbs
- Length parameters are qualified if possible (eg. input_length or
  a_limbs)

Setup functions:

- The parameters match the corresponding structure member's name
- The structure to set up is a standard lower case name even if in other
  functions different naming conventions would apply

Scope of changes/conventions:

- bignum_core
- bignum_mod
- bignum_mod_raw

Signed-off-by: Janos Follath <janos.follath@arm.com>
This commit is contained in:
Janos Follath 2022-08-19 12:24:40 +01:00
parent 6b8a4ad0d8
commit b7a88eca42
8 changed files with 185 additions and 179 deletions

View file

@ -38,14 +38,14 @@
#include "bignum_core.h"
size_t mbedtls_mpi_core_clz( const mbedtls_mpi_uint x )
size_t mbedtls_mpi_core_clz( const mbedtls_mpi_uint a )
{
size_t j;
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
for( j = 0; j < biL; j++ )
{
if( x & mask ) break;
if( a & mask ) break;
mask >>= 1;
}
@ -53,46 +53,46 @@ size_t mbedtls_mpi_core_clz( const mbedtls_mpi_uint x )
return( j );
}
size_t mbedtls_mpi_core_bitlen( const mbedtls_mpi_uint *X, size_t nx )
size_t mbedtls_mpi_core_bitlen( const mbedtls_mpi_uint *A, size_t A_limbs )
{
size_t i, j;
if( nx == 0 )
if( A_limbs == 0 )
return( 0 );
for( i = nx - 1; i > 0; i-- )
if( X[i] != 0 )
for( i = A_limbs - 1; i > 0; i-- )
if( A[i] != 0 )
break;
j = biL - mbedtls_mpi_core_clz( X[i] );
j = biL - mbedtls_mpi_core_clz( A[i] );
return( ( i * biL ) + j );
}
/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
* into the storage form used by mbedtls_mpi. */
static mbedtls_mpi_uint mpi_bigendian_to_host_c( mbedtls_mpi_uint x )
static mbedtls_mpi_uint mpi_bigendian_to_host_c( mbedtls_mpi_uint a )
{
uint8_t i;
unsigned char *x_ptr;
unsigned char *a_ptr;
mbedtls_mpi_uint tmp = 0;
for( i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++ )
for( i = 0, a_ptr = (unsigned char *) &a; i < ciL; i++, a_ptr++ )
{
tmp <<= CHAR_BIT;
tmp |= (mbedtls_mpi_uint) *x_ptr;
tmp |= (mbedtls_mpi_uint) *a_ptr;
}
return( tmp );
}
static mbedtls_mpi_uint mpi_bigendian_to_host( mbedtls_mpi_uint x )
static mbedtls_mpi_uint mpi_bigendian_to_host( mbedtls_mpi_uint a )
{
#if defined(__BYTE_ORDER__)
/* Nothing to do on bigendian systems. */
#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
return( x );
return( a );
#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
@ -116,9 +116,9 @@ static mbedtls_mpi_uint mpi_bigendian_to_host( mbedtls_mpi_uint x )
switch( sizeof(mbedtls_mpi_uint) )
{
case 4:
return( __builtin_bswap32(x) );
return( __builtin_bswap32(a) );
case 8:
return( __builtin_bswap64(x) );
return( __builtin_bswap64(a) );
}
#endif
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
@ -126,10 +126,10 @@ static mbedtls_mpi_uint mpi_bigendian_to_host( mbedtls_mpi_uint x )
/* Fall back to C-based reordering if we don't know the byte order
* or we couldn't use a compiler-specific builtin. */
return( mpi_bigendian_to_host_c( x ) );
return( mpi_bigendian_to_host_c( a ) );
}
void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *X,
void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *A,
size_t limbs )
{
mbedtls_mpi_uint *cur_limb_left;
@ -146,7 +146,7 @@ void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *X,
* than the right index (it's not a problem if limbs is odd and the
* indices coincide in the last iteration).
*/
for( cur_limb_left = X, cur_limb_right = X + ( limbs - 1 );
for( cur_limb_left = A, cur_limb_right = A + ( limbs - 1 );
cur_limb_left <= cur_limb_right;
cur_limb_left++, cur_limb_right-- )
{
@ -160,120 +160,121 @@ void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *X,
}
int mbedtls_mpi_core_read_le( mbedtls_mpi_uint *X,
size_t nx,
const unsigned char *buf,
size_t buflen )
size_t X_limbs,
const unsigned char *input,
size_t input_length )
{
const size_t limbs = CHARS_TO_LIMBS( buflen );
const size_t limbs = CHARS_TO_LIMBS( input_length );
if( nx < limbs )
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
if( X != NULL )
{
memset( X, 0, nx * ciL );
memset( X, 0, X_limbs * ciL );
for( size_t i = 0; i < buflen; i++ )
X[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
for( size_t i = 0; i < input_length; i++ )
X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << ((i % ciL) << 3);
}
return( 0 );
}
int mbedtls_mpi_core_read_be( mbedtls_mpi_uint *X,
size_t nx,
const unsigned char *buf,
size_t buflen )
size_t X_limbs,
const unsigned char *input,
size_t input_length )
{
const size_t limbs = CHARS_TO_LIMBS( buflen );
const size_t limbs = CHARS_TO_LIMBS( input_length );
if( nx < limbs )
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
/* If nx is 0, buflen must also be 0 (from previous test). Nothing to do. */
if( nx == 0 )
/* If X_limbs is 0, input_length must also be 0 (from previous test).
* Nothing to do. */
if( X_limbs == 0 )
return( 0 );
memset( X, 0, nx * ciL );
memset( X, 0, X_limbs * ciL );
/* memcpy() with (NULL, 0) is undefined behaviour */
if( buflen != 0 )
if( input_length != 0 )
{
size_t overhead = ( nx * ciL ) - buflen;
size_t overhead = ( X_limbs * ciL ) - input_length;
unsigned char *Xp = (unsigned char *) X;
memcpy( Xp + overhead, buf, buflen );
memcpy( Xp + overhead, input, input_length );
}
mbedtls_mpi_core_bigendian_to_host( X, nx );
mbedtls_mpi_core_bigendian_to_host( X, X_limbs );
return( 0 );
}
int mbedtls_mpi_core_write_le( const mbedtls_mpi_uint *X,
size_t nx,
unsigned char *buf,
size_t buflen )
int mbedtls_mpi_core_write_le( const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length )
{
size_t stored_bytes = nx * ciL;
size_t stored_bytes = A_limbs * ciL;
size_t bytes_to_copy;
if( stored_bytes < buflen )
if( stored_bytes < output_length )
{
bytes_to_copy = stored_bytes;
}
else
{
bytes_to_copy = buflen;
bytes_to_copy = output_length;
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
/* The output outputfer is smaller than the allocated size of A.
* However A may fit if its leading bytes are zero. */
for( size_t i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( X, i ) != 0 )
if( GET_BYTE( A, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( size_t i = 0; i < bytes_to_copy; i++ )
buf[i] = GET_BYTE( X, i );
output[i] = GET_BYTE( A, i );
if( stored_bytes < buflen )
if( stored_bytes < output_length )
{
/* Write trailing 0 bytes */
memset( buf + stored_bytes, 0, buflen - stored_bytes );
memset( output + stored_bytes, 0, output_length - stored_bytes );
}
return( 0 );
}
int mbedtls_mpi_core_write_be( const mbedtls_mpi_uint *X,
size_t nx,
unsigned char *buf,
size_t buflen )
size_t X_limbs,
unsigned char *output,
size_t output_length )
{
size_t stored_bytes;
size_t bytes_to_copy;
unsigned char *p;
stored_bytes = nx * ciL;
stored_bytes = X_limbs * ciL;
if( stored_bytes < buflen )
if( stored_bytes < output_length )
{
/* There is enough space in the output buffer. Write initial
/* There is enough space in the output outputfer. Write initial
* null bytes and record the position at which to start
* writing the significant bytes. In this case, the execution
* trace of this function does not depend on the value of the
* number. */
bytes_to_copy = stored_bytes;
p = buf + buflen - stored_bytes;
memset( buf, 0, buflen - stored_bytes );
p = output + output_length - stored_bytes;
memset( output, 0, output_length - stored_bytes );
}
else
{
/* The output buffer is smaller than the allocated size of X.
/* The output outputfer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
bytes_to_copy = buflen;
p = buf;
bytes_to_copy = output_length;
p = output;
for( size_t i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( X, i ) != 0 )

View file

@ -33,31 +33,31 @@
/** Count leading zero bits in a given integer.
*
* \param x Integer to count leading zero bits.
* \param a Integer to count leading zero bits.
*
* \return The number of leading zero bits in \p x.
* \return The number of leading zero bits in \p a.
*/
size_t mbedtls_mpi_core_clz( const mbedtls_mpi_uint x );
size_t mbedtls_mpi_core_clz( const mbedtls_mpi_uint a );
/** Return the the minimum number of bits required to represent the value held
* in the MPI.
*
* \note This function returns 0 if all the limbs of \p X are 0.
* \note This function returns 0 if all the limbs of \p A are 0.
*
* \param[in] X The address of the MPI.
* \param nx The number of limbs of \p X.
* \param[in] A The address of the MPI.
* \param a_limbs The number of limbs of \p A.
*
* \return The number of bits in \p X.
* \return The number of bits in \p A.
*/
size_t mbedtls_mpi_core_bitlen( const mbedtls_mpi_uint *X, size_t nx );
size_t mbedtls_mpi_core_bitlen( const mbedtls_mpi_uint *A, size_t a_limbs );
/** Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
* into the storage form used by mbedtls_mpi.
*
* \param[in,out] X The address of the MPI.
* \param limbs The number of limbs of \p X.
* \param[in,out] A The address of the MPI.
* \param limbs The number of limbs of \p A.
*/
void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *X,
void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *A,
size_t limbs );
/** Import X from unsigned binary data, little endian.
@ -65,80 +65,81 @@ void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *X,
* The MPI needs to have enough limbs to store the full value (including any
* most significant zero bytes in the input).
*
* \param[out] X The address of the MPI.
* \param nx The number of limbs of \p X.
* \param[in] buf The input buffer to import from.
* \param buflen The length in bytes of \p buf.
* \param[out] X The address of the MPI.
* \param X_limbs The number of limbs of \p X.
* \param[in] input The input buffer to import from.
* \param input_length The length bytes of \p input.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
* large enough to hold the value in \p buf.
* large enough to hold the value in \p input.
*/
int mbedtls_mpi_core_read_le( mbedtls_mpi_uint *X,
size_t nx,
const unsigned char *buf,
size_t buflen );
size_t X_limbs,
const unsigned char *input,
size_t input_length );
/** Import X from unsigned binary data, big endian.
*
* The MPI needs to have enough limbs to store the full value (including any
* most significant zero bytes in the input).
*
* \param[out] X The address of the MPI.
* May only be #NULL if \nx is 0 and \p buflen is 0.
* \param nx The number of limbs of \p X.
* \param[in] buf The input buffer to import from.
* May only be #NULL if \p buflen is 0.
* \param buflen The length in bytes of \p buf.
* \param[out] X The address of the MPI.
* May only be #NULL if \X_limbs is 0 and \p input_length
* is 0.
* \param X_limbs The number of limbs of \p X.
* \param[in] input The input buffer to import from.
* May only be #NULL if \p input_length is 0.
* \param input_length The length in bytes of \p input.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
* large enough to hold the value in \p buf.
* large enough to hold the value in \p input.
*/
int mbedtls_mpi_core_read_be( mbedtls_mpi_uint *X,
size_t nx,
const unsigned char *buf,
size_t buflen );
size_t X_limbs,
const unsigned char *input,
size_t input_length );
/** Export X into unsigned binary data, little endian.
/** Export A into unsigned binary data, little endian.
*
* \note If \p buf is shorter than \p X the export is still successful if the
* value held in \p X fits in the buffer (that is, if enough of the most
* significant bytes of \p X are 0).
* \note If \p output is shorter than \p A the export is still successful if the
* value held in \p A fits in the buffer (that is, if enough of the most
* significant bytes of \p A are 0).
*
* \param[in] X The address of the MPI.
* \param nx The number of limbs of \p X.
* \param[out] buf The output buffer to export to.
* \param buflen The length in bytes of \p buf.
* \param[in] A The address of the MPI.
* \param A_limbs The number of limbs of \p A.
* \param[out] output The output buffer to export to.
* \param output_length The length in bytes of \p output.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p buf isn't
* large enough to hold the value of \p X.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
* large enough to hold the value of \p A.
*/
int mbedtls_mpi_core_write_le( const mbedtls_mpi_uint *X,
size_t nx,
unsigned char *buf,
size_t buflen );
int mbedtls_mpi_core_write_le( const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length );
/** Export X into unsigned binary data, big endian.
/** Export A into unsigned binary data, big endian.
*
* \note If \p buf is shorter than \p X the export is still successful if the
* value held in \p X fits in the buffer (that is, if enough of the most
* significant bytes of \p X are 0).
* \note If \p output is shorter than \p A the export is still successful if the
* value held in \p A fits in the buffer (that is, if enough of the most
* significant bytes of \p A are 0).
*
* \param[in] X The address of the MPI.
* \param nx The number of limbs of \p X.
* \param[out] buf The output buffer to export to.
* \param buflen The length in bytes of \p buf.
* \param[in] A The address of the MPI.
* \param A_limbs The number of limbs of \p A.
* \param[out] output The output buffer to export to.
* \param output_length The length in bytes of \p output.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p buf isn't
* large enough to hold the value of \p X.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
* large enough to hold the value of \p A.
*/
int mbedtls_mpi_core_write_be( const mbedtls_mpi_uint *X,
size_t nx,
unsigned char *buf,
size_t buflen );
int mbedtls_mpi_core_write_be( const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length );
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
#define biL (ciL << 3) /* bits in limb */

View file

@ -45,9 +45,9 @@
int mbedtls_mpi_mod_residue_setup( mbedtls_mpi_mod_residue *r,
const mbedtls_mpi_mod_modulus *m,
mbedtls_mpi_uint *p,
size_t pn )
size_t p_limbs )
{
if( pn < m->limbs || !mbedtls_mpi_core_lt_ct( m->p, p, pn ) )
if( p_limbs < m->limbs || !mbedtls_mpi_core_lt_ct( m->p, p, p_limbs ) )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
r->limbs = m->limbs;
@ -103,15 +103,15 @@ void mbedtls_mpi_mod_modulus_free( mbedtls_mpi_mod_modulus *m )
int mbedtls_mpi_mod_modulus_setup( mbedtls_mpi_mod_modulus *m,
const mbedtls_mpi_uint *p,
size_t pn,
size_t p_limbs,
mbedtls_mpi_mod_ext_rep ext_rep,
mbedtls_mpi_mod_rep_selector int_rep )
{
int ret = 0;
m->p = p;
m->limbs = pn;
m->bits = mbedtls_mpi_core_bitlen( p, pn );
m->limbs = p_limbs;
m->bits = mbedtls_mpi_core_bitlen( p, p_limbs );
switch( ext_rep )
{

View file

@ -76,16 +76,16 @@ typedef struct {
* The memory pointed to by \p p will be used by \p r and must
* not be modified in any way until after
* mbedtls_mpi_mod_residue_release() is called.
* \param pn The number of limbs of \p p.
* \param p_limbs The number of limbs of \p p.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p pn is less than the limbs
* in \p m or if \p p is not less than \p m.
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p p_limbs is less than the
* limbs in \p m or if \p p is not less than \p m.
*/
int mbedtls_mpi_mod_residue_setup( mbedtls_mpi_mod_residue *r,
const mbedtls_mpi_mod_modulus *m,
mbedtls_mpi_uint *p,
size_t pn );
size_t p_limbs );
/** Unbind elements of a residue structure.
*
@ -112,7 +112,7 @@ void mbedtls_mpi_mod_modulus_init( mbedtls_mpi_mod_modulus *m );
* The memory pointed to by \p p will be used by \p m and must
* not be modified in any way until after
* mbedtls_mpi_mod_modulus_free() is called.
* \param pn The number of limbs of \p p.
* \param p_limbs The number of limbs of \p p.
* \param ext_rep The external representation to be used for residues
* associated with \p m (see #mbedtls_mpi_mod_ext_rep).
* \param int_rep The internal representation to be used for residues
@ -124,7 +124,7 @@ void mbedtls_mpi_mod_modulus_init( mbedtls_mpi_mod_modulus *m );
*/
int mbedtls_mpi_mod_modulus_setup( mbedtls_mpi_mod_modulus *m,
const mbedtls_mpi_uint *p,
size_t pn,
size_t p_limbs,
mbedtls_mpi_mod_ext_rep ext_rep,
mbedtls_mpi_mod_rep_selector int_rep );

View file

@ -43,18 +43,20 @@
int mbedtls_mpi_mod_raw_read( mbedtls_mpi_uint *X,
const mbedtls_mpi_mod_modulus *m,
const unsigned char *buf,
size_t buflen )
const unsigned char *input,
size_t input_lentgth )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
switch( m->ext_rep )
{
case MBEDTLS_MPI_MOD_EXT_REP_LE:
ret = mbedtls_mpi_core_read_le( X, m->limbs, buf, buflen );
ret = mbedtls_mpi_core_read_le( X, m->limbs,
input, input_lentgth );
break;
case MBEDTLS_MPI_MOD_EXT_REP_BE:
ret = mbedtls_mpi_core_read_be( X, m->limbs, buf, buflen );
ret = mbedtls_mpi_core_read_be( X, m->limbs,
input, input_lentgth );
break;
default:
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
@ -74,17 +76,19 @@ cleanup:
return( ret );
}
int mbedtls_mpi_mod_raw_write( const mbedtls_mpi_uint *X,
int mbedtls_mpi_mod_raw_write( const mbedtls_mpi_uint *A,
const mbedtls_mpi_mod_modulus *m,
unsigned char *buf,
size_t buflen )
unsigned char *output,
size_t output_length )
{
switch( m->ext_rep )
{
case MBEDTLS_MPI_MOD_EXT_REP_LE:
return( mbedtls_mpi_core_write_le( X, m->limbs, buf, buflen ) );
return( mbedtls_mpi_core_write_le( A, m->limbs,
output, output_length ) );
case MBEDTLS_MPI_MOD_EXT_REP_BE:
return( mbedtls_mpi_core_write_be( X, m->limbs, buf, buflen ) );
return( mbedtls_mpi_core_write_be( A, m->limbs,
output, output_length ) );
default:
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
}

View file

@ -38,42 +38,42 @@
* The MPI needs to have enough limbs to store the full value (including any
* most significant zero bytes in the input).
*
* \param[out] X The address of the MPI. The size is determined by \p m. (In
* particular, it must have at least as many limbs as the
* modulus \p m.)
* \param[in] m The address of the modulus related to \p X.
* \param[in] buf The input buffer to import from.
* \param buflen The length in bytes of \p buf.
* \param[out] X The address of the MPI. The size is determined by \p m.
* (In particular, it must have at least as many limbs as
* the modulus \p m.)
* \param[in] m The address of the modulus related to \p X.
* \param[in] input The input buffer to import from.
* \param input_length The length in bytes of \p input.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
* large enough to hold the value in \p buf.
* large enough to hold the value in \p input.
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation
* of \p m is invalid or \p X is not less than \p m.
*/
int mbedtls_mpi_mod_raw_read( mbedtls_mpi_uint *X,
const mbedtls_mpi_mod_modulus *m,
const unsigned char *buf,
size_t buflen );
const unsigned char *input,
size_t input_length );
/** Export X into unsigned binary data.
/** Export A into unsigned binary data.
*
* \param[in] X The address of the MPI. The size is determined by \p m. (In
* particular, it must have at least as many limbs as the modulus
* \p m.)
* \param[in] m The address of the modulus related to \p X.
* \param[out] buf The output buffer to export to.
* \param buflen The length in bytes of \p buf.
* \param[in] A The address of the MPI. The size is determined by \p m.
* (In particular, it must have at least as many limbs as
* the modulus \p m.)
* \param[in] m The address of the modulus related to \p A.
* \param[out] output The output buffer to export to.
* \param output_length The length in bytes of \p output.
*
* \return \c 0 if successful.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p buf isn't
* large enough to hold the value of \p X.
* \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
* large enough to hold the value of \p A.
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation
* of \p m is invalid.
*/
int mbedtls_mpi_mod_raw_write( const mbedtls_mpi_uint *X,
int mbedtls_mpi_mod_raw_write( const mbedtls_mpi_uint *A,
const mbedtls_mpi_mod_modulus *m,
unsigned char *buf,
size_t buflen );
unsigned char *output,
size_t output_length );
#endif /* MBEDTLS_BIGNUM_MOD_RAW_H */

View file

@ -744,9 +744,9 @@ cleanup:
/*
* Compare unsigned values in constant time
*/
unsigned mbedtls_mpi_core_lt_ct( const mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *Y,
size_t len )
unsigned mbedtls_mpi_core_lt_ct( const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs )
{
unsigned ret, cond, done;
@ -754,31 +754,31 @@ unsigned mbedtls_mpi_core_lt_ct( const mbedtls_mpi_uint *X,
* their scope. */
ret = cond = done = 0;
for( size_t i = len; i > 0; i-- )
for( size_t i = limbs; i > 0; i-- )
{
/*
* If Y[i - 1] < X[i - 1] then X < Y is false and the result must
* If B[i - 1] < A[i - 1] then A < B is false and the result must
* remain 0.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_mpi_uint_lt( Y[i - 1], X[i - 1] );
cond = mbedtls_ct_mpi_uint_lt( B[i - 1], A[i - 1] );
done |= cond;
/*
* If X[i - 1] < Y[i - 1] then X < Y is true.
* If A[i - 1] < B[i - 1] then A < B is true.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_mpi_uint_lt( X[i - 1], Y[i - 1] );
cond = mbedtls_ct_mpi_uint_lt( A[i - 1], B[i - 1] );
ret |= cond & ( 1 - done );
done |= cond;
}
/*
* If all the limbs were equal, then the numbers are equal, X < Y is false
* If all the limbs were equal, then the numbers are equal, A < B is false
* and leaving the result 0 is correct.
*/

View file

@ -133,19 +133,19 @@ unsigned mbedtls_ct_mpi_uint_lt( const mbedtls_mpi_uint x,
* \brief Check if one unsigned MPI is less than another in constant
* time.
*
* \param X The left-hand MPI. This must point to an array of limbs
* with the same allocated length as \p Y.
* \param Y The right-hand MPI. This must point to an array of limbs
* with the same allocated length as \p X.
* \param len The number of limbs in \p X and \p Y.
* \param A The left-hand MPI. This must point to an array of limbs
* with the same allocated length as \p B.
* \param B The right-hand MPI. This must point to an array of limbs
* with the same allocated length as \p A.
* \param limbs The number of limbs in \p A and \p B.
*
* \return The result of the comparison:
* \c 1 if \p X is less than \p Y.
* \c 0 if \p X is greater than or equal to \p Y.
* \c 1 if \p A is less than \p B.
* \c 0 if \p A is greater than or equal to \p B.
*/
unsigned mbedtls_mpi_core_lt_ct( const mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *Y,
size_t len );
unsigned mbedtls_mpi_core_lt_ct( const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs);
#endif /* MBEDTLS_BIGNUM_C */
/** Choose between two integer values without branches.