Remove PRNG argument from mbedtls_rsa_deduce_moduli

It is not necessary to pass a CSPRNG to `mbedtls_rsa_deduce_moduli`, as there
exist well-working static strategies, and even if a PRNG is preferred, a
non-secure one would be sufficient.

Further, the implementation is changed to use a static strategy for the choice
of candidates which according to some benchmarks even performs better than the
previous one using random candidate choices.
This commit is contained in:
Hanno Becker 2017-10-10 16:39:10 +01:00
parent 0f65e0ca03
commit 68b4d58bd8
2 changed files with 22 additions and 26 deletions

View file

@ -89,8 +89,6 @@ extern "C" {
* \param N RSA modulus N = PQ, with P, Q to be found
* \param D RSA private exponent
* \param E RSA public exponent
* \param f_rng PRNG to be used for randomization, or NULL
* \param p_rng PRNG context for f_rng, or NULL
* \param P Pointer to MPI holding first prime factor of N on success
* \param Q Pointer to MPI holding second prime factor of N on success
*
@ -105,8 +103,8 @@ extern "C" {
*
*/
int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, mbedtls_mpi const *D,
mbedtls_mpi const *E, int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng, mbedtls_mpi *P, mbedtls_mpi *Q );
mbedtls_mpi const *E,
mbedtls_mpi *P, mbedtls_mpi *Q );
/**
* \brief Compute RSA private exponent from

View file

@ -132,7 +132,6 @@ static void mbedtls_zeroize( void *v, size_t n ) {
*/
int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
mbedtls_mpi const *D, mbedtls_mpi const *E,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
mbedtls_mpi *P, mbedtls_mpi *Q )
{
int ret = 0;
@ -140,13 +139,25 @@ int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
uint16_t attempt; /* Number of current attempt */
uint16_t iter; /* Number of squares computed in the current attempt */
uint16_t bitlen_half; /* Half the bitsize of the modulus N */
uint16_t order; /* Order of 2 in DE - 1 */
mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
mbedtls_mpi K; /* During factorization attempts, stores a random integer
* in the range of [0,..,N] */
const unsigned int primes[] = { 2,
3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311, 313
};
const size_t num_primes = sizeof( primes ) / sizeof( *primes );
if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
@ -179,31 +190,18 @@ int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
/* After this operation, T holds the largest odd divisor of DE - 1. */
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
/* This is used to generate a few numbers around N / 2
* if no PRNG is provided. */
if( f_rng == NULL )
bitlen_half = mbedtls_mpi_bitlen( N ) / 2;
/*
* Actual work
*/
for( attempt = 0; attempt < 30; ++attempt )
/* Skip trying 2 if N == 1 mod 8 */
attempt = 0;
if( N->p[0] % 8 == 1 )
attempt = 1;
for( ; attempt < num_primes; ++attempt )
{
/* Generate some number in [0,N], either randomly
* if a PRNG is given, or try numbers around N/2 */
if( f_rng != NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &K,
mbedtls_mpi_size( N ),
f_rng, p_rng ) );
}
else
{
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &K, 1 ) ) ;
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &K, bitlen_half ) ) ;
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, attempt + 1 ) );
}
mbedtls_mpi_lset( &K, primes[attempt] );
/* Check if gcd(K,N) = 1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );