Generate primes according to FIPS 186-4
The specification requires that numbers are the raw entropy (except for odd/ even) and at least 2^(nbits-0.5). If not, new random bits need to be used for the next number. Similarly, if the number is not prime new random bits need to be used.
This commit is contained in:
parent
97f95c9ef3
commit
666892792d
2 changed files with 74 additions and 54 deletions
116
library/bignum.c
116
library/bignum.c
|
@ -2194,12 +2194,23 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
|
|||
|
||||
/*
|
||||
* Prime number generation
|
||||
*
|
||||
* If dh_flag is 0 and nbits is at least 1024, then the procedure
|
||||
* follows the RSA probably-prime generation method of FIPS 186-4.
|
||||
* NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536.
|
||||
*/
|
||||
int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
int ret;
|
||||
#ifdef MBEDTLS_HAVE_INT64
|
||||
// ceil(2^63.5)
|
||||
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
|
||||
#else
|
||||
// ceil(2^31.5)
|
||||
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
|
||||
#endif
|
||||
int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
size_t k, n;
|
||||
mbedtls_mpi_uint r;
|
||||
mbedtls_mpi Y;
|
||||
|
@ -2211,69 +2222,66 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
|
|||
|
||||
n = BITS_TO_LIMBS( nbits );
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
|
||||
|
||||
k = mbedtls_mpi_bitlen( X );
|
||||
if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) );
|
||||
|
||||
mbedtls_mpi_set_bit( X, nbits-1, 1 );
|
||||
|
||||
X->p[0] |= 1;
|
||||
|
||||
if( dh_flag == 0 )
|
||||
while( 1 )
|
||||
{
|
||||
while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
|
||||
/* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
|
||||
if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
|
||||
|
||||
k = n * biL;
|
||||
if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
|
||||
X->p[0] |= 1;
|
||||
|
||||
if( dh_flag == 0 )
|
||||
{
|
||||
ret = mbedtls_mpi_is_prime( X, f_rng, p_rng );
|
||||
|
||||
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
||||
goto cleanup;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* An necessary condition for Y and X = 2Y + 1 to be prime
|
||||
* is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
|
||||
* Make sure it is satisfied, while keeping X = 3 mod 4
|
||||
*/
|
||||
|
||||
X->p[0] |= 2;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
|
||||
if( r == 0 )
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
|
||||
else if( r == 1 )
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
|
||||
|
||||
/* Set Y = (X-1) / 2, which is X / 2 because X is odd */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
|
||||
|
||||
while( 1 )
|
||||
else
|
||||
{
|
||||
/*
|
||||
* First, check small factors for X and Y
|
||||
* before doing Miller-Rabin on any of them
|
||||
* An necessary condition for Y and X = 2Y + 1 to be prime
|
||||
* is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
|
||||
* Make sure it is satisfied, while keeping X = 3 mod 4
|
||||
*/
|
||||
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
|
||||
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
|
||||
( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
|
||||
( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
|
||||
|
||||
X->p[0] |= 2;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
|
||||
if( r == 0 )
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
|
||||
else if( r == 1 )
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
|
||||
|
||||
/* Set Y = (X-1) / 2, which is X / 2 because X is odd */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
|
||||
|
||||
while( 1 )
|
||||
{
|
||||
break;
|
||||
/*
|
||||
* First, check small factors for X and Y
|
||||
* before doing Miller-Rabin on any of them
|
||||
*/
|
||||
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
|
||||
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
|
||||
( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
|
||||
( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
|
||||
goto cleanup;
|
||||
|
||||
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
||||
goto cleanup;
|
||||
|
||||
/*
|
||||
* Next candidates. We want to preserve Y = (X-1) / 2 and
|
||||
* Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
|
||||
* so up Y by 6 and X by 12.
|
||||
*/
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
|
||||
}
|
||||
|
||||
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
||||
goto cleanup;
|
||||
|
||||
/*
|
||||
* Next candidates. We want to preserve Y = (X-1) / 2 and
|
||||
* Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
|
||||
* so up Y by 6 and X by 12.
|
||||
*/
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -688,6 +688,18 @@ Test mbedtls_mpi_gen_prime (OK, minimum size)
|
|||
depends_on:MBEDTLS_GENPRIME
|
||||
mbedtls_mpi_gen_prime:3:0:0
|
||||
|
||||
Test mbedtls_mpi_gen_prime (corner case limb size -1 bits)
|
||||
depends_on:MBEDTLS_GENPRIME
|
||||
mbedtls_mpi_gen_prime:63:0:0
|
||||
|
||||
Test mbedtls_mpi_gen_prime (corner case limb size)
|
||||
depends_on:MBEDTLS_GENPRIME
|
||||
mbedtls_mpi_gen_prime:64:0:0
|
||||
|
||||
Test mbedtls_mpi_gen_prime (corner case limb size +1 bits)
|
||||
depends_on:MBEDTLS_GENPRIME
|
||||
mbedtls_mpi_gen_prime:65:0:0
|
||||
|
||||
Test mbedtls_mpi_gen_prime (Larger)
|
||||
depends_on:MBEDTLS_GENPRIME
|
||||
mbedtls_mpi_gen_prime:128:0:0
|
||||
|
|
Loading…
Reference in a new issue