Use ecp_gen_privkey() in ECDSA sign
Two different changes: - the first one will allow us to store k in the restart context while restarting the following ecp_mul() operation - the second one is an simplification, unrelated to restartability, made possible by the fact that ecp_gen_privkey() is now public
This commit is contained in:
parent
675439620d
commit
50b63ba2f5
1 changed files with 6 additions and 15 deletions
|
@ -225,7 +225,7 @@ static int ecdsa_sign_restartable( mbedtls_ecp_group *grp,
|
|||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
|
||||
mbedtls_ecdsa_restart_ctx *rs_ctx )
|
||||
{
|
||||
int ret, key_tries, sign_tries, blind_tries;
|
||||
int ret, key_tries, sign_tries;
|
||||
mbedtls_ecp_point R;
|
||||
mbedtls_mpi k, e, t;
|
||||
|
||||
|
@ -271,7 +271,10 @@ static int ecdsa_sign_restartable( mbedtls_ecp_group *grp,
|
|||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &k, f_rng, p_rng ) );
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, &R, &k, &grp->G,
|
||||
f_rng, p_rng ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) );
|
||||
}
|
||||
while( mbedtls_mpi_cmp_int( r, 0 ) == 0 );
|
||||
|
@ -285,19 +288,7 @@ static int ecdsa_sign_restartable( mbedtls_ecp_group *grp,
|
|||
* Generate a random value to blind inv_mod in next step,
|
||||
* avoiding a potential timing leak.
|
||||
*/
|
||||
blind_tries = 0;
|
||||
do
|
||||
{
|
||||
size_t n_size = ( grp->nbits + 7 ) / 8;
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng, p_rng ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) );
|
||||
|
||||
/* See mbedtls_ecp_gen_keypair() */
|
||||
if( ++blind_tries > 30 )
|
||||
return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
|
||||
}
|
||||
while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 ||
|
||||
mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 );
|
||||
MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &t, f_rng, p_rng ) );
|
||||
|
||||
/*
|
||||
* Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
|
||||
|
|
Loading…
Reference in a new issue