Merge pull request #7351 from gabor-mezei-arm/7109_ecp_fast_reduction_testing

Test unlikely cases of ECC modular reduction
This commit is contained in:
Janos Follath 2023-04-06 15:55:19 +01:00 committed by GitHub
commit 44c6694be7
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 170 additions and 100 deletions

View file

@ -4897,7 +4897,7 @@ static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
#define A(i) Np + (i) * WIDTH
#define ADD(i) add64(p, A(i), &c)
#define NEXT p += WIDTH; carry64(p, &c)
#define LAST p += WIDTH; *p = c; while (++p < end) *p = 0
#define LAST p += WIDTH; do *p = 0; while (++p < end)
#define RESET last_carry[0] = c; c = 0; p = Np
#define ADD_LAST add64(p, last_carry, &c)
@ -4934,13 +4934,23 @@ int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn)
RESET;
/* Use the reduction for the carry as well:
* 2^192 * last_carry = 2^64 * last_carry + last_carry mod P192
* It can generate a carry. */
ADD_LAST; NEXT; // A0 += last_carry
ADD_LAST; NEXT; // A1 += last_carry
// A2 += carry
RESET;
/* Use the reduction for the carry as well:
* 2^192 * last_carry = 2^64 * last_carry + last_carry mod P192
*/
ADD_LAST; NEXT; // A0 += last_carry
ADD_LAST; NEXT; // A1 += last_carry
// A2 += carry
LAST; // A2 += carry
LAST;
return 0;
}

View file

@ -28,7 +28,7 @@ class EcpTarget(test_data_generation.BaseTarget):
class EcpP192R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ecp quasi_reduction()."""
"""Test cases for ECP P192 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p192_raw"
test_name = "ecp_mod_p192_raw"
@ -43,6 +43,24 @@ class EcpP192R1Raw(bignum_common.ModOperationCommon,
# Modulus - 1
"fffffffffffffffffffffffffffffffefffffffffffffffe",
# Modulus + 1
"ffffffffffffffffffffffffffffffff0000000000000000",
# 2^192 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P192 multiplication result
("fffffffffffffffffffffffffffffffdfffffffffffffffc"
"000000000000000100000000000000040000000000000004"),
# Generate an overflow during reduction
("00000000000000000000000000000001ffffffffffffffff"
"ffffffffffffffffffffffffffffffff0000000000000000"),
# Generate an overflow during carry reduction
("ffffffffffffffff00000000000000010000000000000000"
"fffffffffffffffeffffffffffffffff0000000000000000"),
# First 8 number generated by random.getrandbits(384) - seed(2,2)
("cf1822ffbc6887782b491044d5e341245c6e433715ba2bdd"
"177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
@ -81,7 +99,7 @@ class EcpP192R1Raw(bignum_common.ModOperationCommon,
class EcpP224R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ecp quasi_reduction()."""
"""Test cases for ECP P224 fast reduction."""
symbol = "-"
test_function = "ecp_mod_p224_raw"
test_name = "ecp_mod_p224_raw"
@ -96,6 +114,12 @@ class EcpP224R1Raw(bignum_common.ModOperationCommon,
# Modulus - 1
"ffffffffffffffffffffffffffffffff000000000000000000000000",
# Modulus + 1
"ffffffffffffffffffffffffffffffff000000000000000000000002",
# 2^224 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P224 multiplication result
("fffffffffffffffffffffffffffffffe000000000000000000000000"
"00000001000000000000000000000000000000000000000000000000"),
@ -145,100 +169,6 @@ class EcpP224R1Raw(bignum_common.ModOperationCommon,
return True
class EcpP384R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ecp quasi_reduction modulo p384."""
test_function = "ecp_mod_p384_raw"
test_name = "ecp_mod_p384_raw"
input_style = "fixed"
arity = 1
moduli = [("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffeffffffff0000000000000000ffffffff")
] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef"
"fffffff0000000000000000fffffffe"),
# Maximum canonical P384 multiplication result
("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fdfffffffe0000000000000001fffffffc0000000000000000000000000000000"
"10000000200000000fffffffe000000020000000400000000fffffffc00000004"),
# Testing with overflow in A(12) + A(21) + A(20);
("497811378624857a2c2af60d70583376545484cfae5c812fe2999fc1abb51d18b"
"559e8ca3b50aaf263fdf8f24bdfb98fffffffff20e65bf9099e4e73a5e8b517cf"
"4fbeb8fd1750fdae6d43f2e53f82d5ffffffffffffffffcc6f1e06111c62e0"),
# Testing with underflow in A(13) + A(22) + A(23) - A(12) - A(20);
("dfdd25e96777406b3c04b8c7b406f5fcf287e1e576003a092852a6fbe517f2712"
"b68abef41dbd35183a0614fb7222606ffffffff84396eee542f18a9189d94396c"
"784059c17a9f18f807214ef32f2f10ffffffff8a77fac20000000000000000"),
# Testing with overflow in A(23) + A(20) + A(19) - A(22);
("783753f8a5afba6c1862eead1deb2fcdd907272be3ffd18542b24a71ee8b26ca"
"b0aa33513610ff973042bbe1637cc9fc99ad36c7f703514572cf4f5c3044469a"
"8f5be6312c19e5d3f8fc1ac6ffffffffffffffff8c86252400000000ffffffff"),
# Testing with underflow in A(23) + A(20) + A(19) - A(22);
("65e1d2362fce922663b7fd517586e88842a9b4bd092e93e6251c9c69f278cbf8"
"285d99ae3b53da5ba36e56701e2b17c225f1239556c5f00117fa140218b46ebd8"
"e34f50d0018701fa8a0a5cc00000000000000004410bcb4ffffffff00000000"),
# Testing the second round of carry reduction
("000000000000000000000000ffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffff00000000000000000000000000000000ffffffff00000000"
"000000000000000100000000000000000000000000000000ffffffff00000001"),
# First 8 number generated by random.getrandbits(768) - seed(2,2)
("ffed9235288bc781ae66267594c9c9500925e4749b575bd13653f8dd9b1f282e"
"4067c3584ee207f8da94e3e8ab73738fcf1822ffbc6887782b491044d5e34124"
"5c6e433715ba2bdd177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045defc044a09325626"
"e6b58de744ab6cce80877b6f71e1f6d2ef8acd128b4f2fc15f3f57ebf30b94fa"
"82523e86feac7eb7dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"),
("fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f15c14bc4a829e07b0"
"829a48d422fe99a22c70501e533c91352d3d854e061b90303b08c6e33c729578"
"2d6c797f8f7d9b782a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2721dea3bf63f23d0"
"dbe53fcafb2147df5ca495fa5a91c89b97eeab64ca2ce6bc5d3fd983c34c769f"
"e89204e2e8168561867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"),
("8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4e73695c3e652c71a"
"74667bffe202849da9643a295a9ac6decbd4d3e2d4dec9ef83f0be4e80371eb9"
"7f81375eecc1cb6347733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("d4c0dca8b4c9e755cc9c3adcf515a8234da4daeb4f3f87777ad1f45ae9500ec9"
"c5e2486c44a4a8f69dc8db48e86ec9c6e06f291b2a838af8d5c44a4eb3172062"
"d08f1bb2531d6460f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"),
("227eeb7b9d7d01f5769da05d205bbfcc8c69069134bccd3e1cf4f589f8e4ce0a"
"f29d115ef24bd625dd961e6830b54fa7d28f93435339774bb1e386c4fd5079e6"
"81b8f5896838b769da59b74a6c3181c81e220df848b1df78feb994a81167346"),
("d322a7353ead4efe440e2b4fda9c025a22f1a83185b98f5fc11e60de1b343f52"
"ea748db9e020307aaeb6db2c3a038a709779ac1f45e9dd320c855fdfa7251af0"
"930cdbd30f0ad2a81b2d19a2beaa14a7ff3fe32a30ffc4eed0a7bd04e85bfcdd"),
# Next 2 number generated by random.getrandbits(384)
("5c3747465cc36c270e8a35b10828d569c268a20eb78ac332e5e138e26c4454b9"
"0f756132e16dce72f18e859835e1f291"),
("eb2b5693babb7fbb0a76c196067cfdcb11457d9cf45e2fa01d7f427515392480"
"0600571fac3a5b263fdf57cd2c006497")
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
class EcpP256R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P256 fast reduction."""
@ -256,6 +186,12 @@ class EcpP256R1Raw(bignum_common.ModOperationCommon,
# Modulus - 1
"ffffffff00000001000000000000000000000000fffffffffffffffffffffffe",
# Modulus + 1
"ffffffff00000001000000000000000000000001000000000000000000000000",
# 2^256 - 1
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
# Maximum canonical P256 multiplication result
("fffffffe00000002fffffffe0000000100000001fffffffe00000001fffffffc"
"00000003fffffffcfffffffffffffffffffffffc000000000000000000000004"),
@ -312,9 +248,125 @@ class EcpP256R1Raw(bignum_common.ModOperationCommon,
return True
class EcpP384R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ECP P384 fast reduction."""
test_function = "ecp_mod_p384_raw"
test_name = "ecp_mod_p384_raw"
input_style = "fixed"
arity = 1
moduli = [("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffeffffffff0000000000000000ffffffff")
] # type: List[str]
input_values = [
"0", "1",
# Modulus - 1
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffeffffffff0000000000000000fffffffe"),
# Modulus + 1
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffeffffffff000000000000000100000000"),
# 2^384 - 1
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffff"),
# Maximum canonical P384 multiplication result
("ffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffdfffffffe0000000000000001fffffffc"
"000000000000000000000000000000010000000200000000"
"fffffffe000000020000000400000000fffffffc00000004"),
# Testing with overflow in A(12) + A(21) + A(20);
("497811378624857a2c2af60d70583376545484cfae5c812f"
"e2999fc1abb51d18b559e8ca3b50aaf263fdf8f24bdfb98f"
"ffffffff20e65bf9099e4e73a5e8b517cf4fbeb8fd1750fd"
"ae6d43f2e53f82d5ffffffffffffffffcc6f1e06111c62e0"),
# Testing with underflow in A(13) + A(22) + A(23) - A(12) - A(20);
("dfdd25e96777406b3c04b8c7b406f5fcf287e1e576003a09"
"2852a6fbe517f2712b68abef41dbd35183a0614fb7222606"
"ffffffff84396eee542f18a9189d94396c784059c17a9f18"
"f807214ef32f2f10ffffffff8a77fac20000000000000000"),
# Testing with overflow in A(23) + A(20) + A(19) - A(22);
("783753f8a5afba6c1862eead1deb2fcdd907272be3ffd185"
"42b24a71ee8b26cab0aa33513610ff973042bbe1637cc9fc"
"99ad36c7f703514572cf4f5c3044469a8f5be6312c19e5d3"
"f8fc1ac6ffffffffffffffff8c86252400000000ffffffff"),
# Testing with underflow in A(23) + A(20) + A(19) - A(22);
("65e1d2362fce922663b7fd517586e88842a9b4bd092e93e6"
"251c9c69f278cbf8285d99ae3b53da5ba36e56701e2b17c2"
"25f1239556c5f00117fa140218b46ebd8e34f50d0018701f"
"a8a0a5cc00000000000000004410bcb4ffffffff00000000"),
# Testing the second round of carry reduction
("000000000000000000000000ffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffff0000000000000000"
"0000000000000000ffffffff000000000000000000000001"
"00000000000000000000000000000000ffffffff00000001"),
# First 8 number generated by random.getrandbits(768) - seed(2,2)
("ffed9235288bc781ae66267594c9c9500925e4749b575bd1"
"3653f8dd9b1f282e4067c3584ee207f8da94e3e8ab73738f"
"cf1822ffbc6887782b491044d5e341245c6e433715ba2bdd"
"177219d30e7a269fd95bafc8f2a4d27bdcf4bb99f4bea973"),
("e8624fab5186ee32ee8d7ee9770348a05d300cb90706a045"
"defc044a09325626e6b58de744ab6cce80877b6f71e1f6d2"
"ef8acd128b4f2fc15f3f57ebf30b94fa82523e86feac7eb7"
"dc38f519b91751dacdbd47d364be8049a372db8f6e405d93"),
("fec3f6b32e8d4b8a8f54f8ceacaab39e83844b40ffa9b9f1"
"5c14bc4a829e07b0829a48d422fe99a22c70501e533c9135"
"2d3d854e061b90303b08c6e33c7295782d6c797f8f7d9b78"
"2a1be9cd8697bbd0e2520e33e44c50556c71c4a66148a86f"),
("bd143fa9b714210c665d7435c1066932f4767f26294365b2"
"721dea3bf63f23d0dbe53fcafb2147df5ca495fa5a91c89b"
"97eeab64ca2ce6bc5d3fd983c34c769fe89204e2e8168561"
"867e5e15bc01bfce6a27e0dfcbf8754472154e76e4c11ab2"),
("8ebdbfe3eb9ac688b9d39cca91551e8259cc60b17604e4b4"
"e73695c3e652c71a74667bffe202849da9643a295a9ac6de"
"cbd4d3e2d4dec9ef83f0be4e80371eb97f81375eecc1cb63"
"47733e847d718d733ff98ff387c56473a7a83ee0761ebfd2"),
("d4c0dca8b4c9e755cc9c3adcf515a8234da4daeb4f3f8777"
"7ad1f45ae9500ec9c5e2486c44a4a8f69dc8db48e86ec9c6"
"e06f291b2a838af8d5c44a4eb3172062d08f1bb2531d6460"
"f0caeef038c89b38a8acb5137c9260dc74e088a9b9492f25"),
("0227eeb7b9d7d01f5769da05d205bbfcc8c69069134bccd3"
"e1cf4f589f8e4ce0af29d115ef24bd625dd961e6830b54fa"
"7d28f93435339774bb1e386c4fd5079e681b8f5896838b76"
"9da59b74a6c3181c81e220df848b1df78feb994a81167346"),
("d322a7353ead4efe440e2b4fda9c025a22f1a83185b98f5f"
"c11e60de1b343f52ea748db9e020307aaeb6db2c3a038a70"
"9779ac1f45e9dd320c855fdfa7251af0930cdbd30f0ad2a8"
"1b2d19a2beaa14a7ff3fe32a30ffc4eed0a7bd04e85bfcdd"),
# Next 2 number generated by random.getrandbits(384)
("5c3747465cc36c270e8a35b10828d569c268a20eb78ac332"
"e5e138e26c4454b90f756132e16dce72f18e859835e1f291"),
("eb2b5693babb7fbb0a76c196067cfdcb11457d9cf45e2fa0"
"1d7f4275153924800600571fac3a5b263fdf57cd2c006497")
]
@property
def arg_a(self) -> str:
return super().format_arg('{:x}'.format(self.int_a)).zfill(2 * self.hex_digits)
def result(self) -> List[str]:
result = self.int_a % self.int_n
return [self.format_result(result)]
@property
def is_valid(self) -> bool:
return True
class EcpP521R1Raw(bignum_common.ModOperationCommon,
EcpTarget):
"""Test cases for ecp quasi_reduction()."""
"""Test cases for ECP P521 fast reduction."""
test_function = "ecp_mod_p521_raw"
test_name = "ecp_mod_p521_raw"
input_style = "arch_split"
@ -327,7 +379,15 @@ class EcpP521R1Raw(bignum_common.ModOperationCommon,
input_values = [
"0", "1",
# Corner case: maximum canonical P521 multiplication result
# Modulus - 1
("01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe"),
# Modulus + 1
("020000000000000000000000000000000000000000000000000000000000000000"
"000000000000000000000000000000000000000000000000000000000000000000"),
# Maximum canonical P521 multiplication result
("0003ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffff800"