Move mbedtls_ct_hmac into ssl_msg.c
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
This commit is contained in:
parent
8c94e219f9
commit
2801f7fa8d
4 changed files with 288 additions and 278 deletions
|
@ -431,227 +431,6 @@ void mbedtls_ct_memcpy_offset(unsigned char *dest,
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_USE_PSA_CRYPTO)
|
||||
|
||||
#if defined(PSA_WANT_ALG_SHA_384)
|
||||
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
|
||||
#elif defined(PSA_WANT_ALG_SHA_256)
|
||||
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
|
||||
#else /* See check_config.h */
|
||||
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
|
||||
#endif
|
||||
|
||||
int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
|
||||
psa_algorithm_t mac_alg,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output)
|
||||
{
|
||||
/*
|
||||
* This function breaks the HMAC abstraction and uses psa_hash_clone()
|
||||
* extension in order to get constant-flow behaviour.
|
||||
*
|
||||
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
|
||||
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
|
||||
* patterns (see RFC 2104, sec. 2).
|
||||
*
|
||||
* We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
|
||||
* hashing up to minlen, then cloning the context, and for each byte up
|
||||
* to maxlen finishing up the hash computation, keeping only the
|
||||
* correct result.
|
||||
*
|
||||
* Then we only need to compute HASH(okey + inner_hash) and we're done.
|
||||
*/
|
||||
psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
|
||||
const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
|
||||
unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
|
||||
const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
|
||||
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
|
||||
size_t hash_length;
|
||||
|
||||
unsigned char aux_out[PSA_HASH_MAX_SIZE];
|
||||
psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
|
||||
size_t offset;
|
||||
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
size_t mac_key_length;
|
||||
size_t i;
|
||||
|
||||
#define PSA_CHK(func_call) \
|
||||
do { \
|
||||
status = (func_call); \
|
||||
if (status != PSA_SUCCESS) \
|
||||
goto cleanup; \
|
||||
} while (0)
|
||||
|
||||
/* Export MAC key
|
||||
* We assume key length is always exactly the output size
|
||||
* which is never more than the block size, thus we use block_size
|
||||
* as the key buffer size.
|
||||
*/
|
||||
PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
|
||||
|
||||
/* Calculate ikey */
|
||||
for (i = 0; i < mac_key_length; i++) {
|
||||
key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
|
||||
}
|
||||
for (; i < block_size; ++i) {
|
||||
key_buf[i] = 0x36;
|
||||
}
|
||||
|
||||
PSA_CHK(psa_hash_setup(&operation, hash_alg));
|
||||
|
||||
/* Now compute inner_hash = HASH(ikey + msg) */
|
||||
PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
|
||||
PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
|
||||
PSA_CHK(psa_hash_update(&operation, data, min_data_len));
|
||||
|
||||
/* Fill the hash buffer in advance with something that is
|
||||
* not a valid hash (barring an attack on the hash and
|
||||
* deliberately-crafted input), in case the caller doesn't
|
||||
* check the return status properly. */
|
||||
memset(output, '!', hash_size);
|
||||
|
||||
/* For each possible length, compute the hash up to that point */
|
||||
for (offset = min_data_len; offset <= max_data_len; offset++) {
|
||||
PSA_CHK(psa_hash_clone(&operation, &aux_operation));
|
||||
PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
|
||||
PSA_HASH_MAX_SIZE, &hash_length));
|
||||
/* Keep only the correct inner_hash in the output buffer */
|
||||
mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
|
||||
offset, data_len_secret);
|
||||
|
||||
if (offset < max_data_len) {
|
||||
PSA_CHK(psa_hash_update(&operation, data + offset, 1));
|
||||
}
|
||||
}
|
||||
|
||||
/* Abort current operation to prepare for final operation */
|
||||
PSA_CHK(psa_hash_abort(&operation));
|
||||
|
||||
/* Calculate okey */
|
||||
for (i = 0; i < mac_key_length; i++) {
|
||||
key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
|
||||
}
|
||||
for (; i < block_size; ++i) {
|
||||
key_buf[i] = 0x5C;
|
||||
}
|
||||
|
||||
/* Now compute HASH(okey + inner_hash) */
|
||||
PSA_CHK(psa_hash_setup(&operation, hash_alg));
|
||||
PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
|
||||
PSA_CHK(psa_hash_update(&operation, output, hash_size));
|
||||
PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
|
||||
|
||||
#undef PSA_CHK
|
||||
|
||||
cleanup:
|
||||
mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
|
||||
mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
|
||||
|
||||
psa_hash_abort(&operation);
|
||||
psa_hash_abort(&aux_operation);
|
||||
return PSA_TO_MBEDTLS_ERR(status);
|
||||
}
|
||||
|
||||
#undef MAX_HASH_BLOCK_LENGTH
|
||||
|
||||
#else
|
||||
int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output)
|
||||
{
|
||||
/*
|
||||
* This function breaks the HMAC abstraction and uses the md_clone()
|
||||
* extension to the MD API in order to get constant-flow behaviour.
|
||||
*
|
||||
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
|
||||
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
|
||||
* patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
|
||||
*
|
||||
* We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
|
||||
* minlen, then cloning the context, and for each byte up to maxlen
|
||||
* finishing up the hash computation, keeping only the correct result.
|
||||
*
|
||||
* Then we only need to compute HASH(okey + inner_hash) and we're done.
|
||||
*/
|
||||
const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
|
||||
/* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
|
||||
* all of which have the same block size except SHA-384. */
|
||||
const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
|
||||
const unsigned char * const ikey = ctx->hmac_ctx;
|
||||
const unsigned char * const okey = ikey + block_size;
|
||||
const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
|
||||
|
||||
unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
|
||||
mbedtls_md_context_t aux;
|
||||
size_t offset;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
mbedtls_md_init(&aux);
|
||||
|
||||
#define MD_CHK(func_call) \
|
||||
do { \
|
||||
ret = (func_call); \
|
||||
if (ret != 0) \
|
||||
goto cleanup; \
|
||||
} while (0)
|
||||
|
||||
MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
|
||||
|
||||
/* After hmac_start() of hmac_reset(), ikey has already been hashed,
|
||||
* so we can start directly with the message */
|
||||
MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
|
||||
MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
|
||||
|
||||
/* Fill the hash buffer in advance with something that is
|
||||
* not a valid hash (barring an attack on the hash and
|
||||
* deliberately-crafted input), in case the caller doesn't
|
||||
* check the return status properly. */
|
||||
memset(output, '!', hash_size);
|
||||
|
||||
/* For each possible length, compute the hash up to that point */
|
||||
for (offset = min_data_len; offset <= max_data_len; offset++) {
|
||||
MD_CHK(mbedtls_md_clone(&aux, ctx));
|
||||
MD_CHK(mbedtls_md_finish(&aux, aux_out));
|
||||
/* Keep only the correct inner_hash in the output buffer */
|
||||
mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
|
||||
offset, data_len_secret);
|
||||
|
||||
if (offset < max_data_len) {
|
||||
MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
|
||||
}
|
||||
}
|
||||
|
||||
/* The context needs to finish() before it starts() again */
|
||||
MD_CHK(mbedtls_md_finish(ctx, aux_out));
|
||||
|
||||
/* Now compute HASH(okey + inner_hash) */
|
||||
MD_CHK(mbedtls_md_starts(ctx));
|
||||
MD_CHK(mbedtls_md_update(ctx, okey, block_size));
|
||||
MD_CHK(mbedtls_md_update(ctx, output, hash_size));
|
||||
MD_CHK(mbedtls_md_finish(ctx, output));
|
||||
|
||||
/* Done, get ready for next time */
|
||||
MD_CHK(mbedtls_md_hmac_reset(ctx));
|
||||
|
||||
#undef MD_CHK
|
||||
|
||||
cleanup:
|
||||
mbedtls_md_free(&aux);
|
||||
return ret;
|
||||
}
|
||||
#endif /* MBEDTLS_USE_PSA_CRYPTO */
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
|
||||
|
||||
#if defined(MBEDTLS_BIGNUM_C)
|
||||
|
|
|
@ -236,63 +236,6 @@ void mbedtls_ct_memcpy_offset(unsigned char *dest,
|
|||
size_t offset_max,
|
||||
size_t len);
|
||||
|
||||
/** Compute the HMAC of variable-length data with constant flow.
|
||||
*
|
||||
* This function computes the HMAC of the concatenation of \p add_data and \p
|
||||
* data, and does with a code flow and memory access pattern that does not
|
||||
* depend on \p data_len_secret, but only on \p min_data_len and \p
|
||||
* max_data_len. In particular, this function always reads exactly \p
|
||||
* max_data_len bytes from \p data.
|
||||
*
|
||||
* \param ctx The HMAC context. It must have keys configured
|
||||
* with mbedtls_md_hmac_starts() and use one of the
|
||||
* following hashes: SHA-384, SHA-256, SHA-1 or MD-5.
|
||||
* It is reset using mbedtls_md_hmac_reset() after
|
||||
* the computation is complete to prepare for the
|
||||
* next computation.
|
||||
* \param add_data The first part of the message whose HMAC is being
|
||||
* calculated. This must point to a readable buffer
|
||||
* of \p add_data_len bytes.
|
||||
* \param add_data_len The length of \p add_data in bytes.
|
||||
* \param data The buffer containing the second part of the
|
||||
* message. This must point to a readable buffer
|
||||
* of \p max_data_len bytes.
|
||||
* \param data_len_secret The length of the data to process in \p data.
|
||||
* This must be no less than \p min_data_len and no
|
||||
* greater than \p max_data_len.
|
||||
* \param min_data_len The minimal length of the second part of the
|
||||
* message, read from \p data.
|
||||
* \param max_data_len The maximal length of the second part of the
|
||||
* message, read from \p data.
|
||||
* \param output The HMAC will be written here. This must point to
|
||||
* a writable buffer of sufficient size to hold the
|
||||
* HMAC value.
|
||||
*
|
||||
* \retval 0 on success.
|
||||
* \retval #MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED
|
||||
* The hardware accelerator failed.
|
||||
*/
|
||||
#if defined(MBEDTLS_USE_PSA_CRYPTO)
|
||||
int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
|
||||
psa_algorithm_t alg,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output);
|
||||
#else
|
||||
int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output);
|
||||
#endif /* MBEDTLS_USE_PSA_CRYPTO */
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
|
||||
|
||||
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
|
||||
|
|
|
@ -2788,4 +2788,64 @@ static inline void mbedtls_ssl_session_clear_ticket_flags(
|
|||
int mbedtls_ssl_tls13_finalize_client_hello(mbedtls_ssl_context *ssl);
|
||||
#endif
|
||||
|
||||
#if defined(MBEDTLS_TEST_HOOKS) && defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
|
||||
|
||||
/** Compute the HMAC of variable-length data with constant flow.
|
||||
*
|
||||
* This function computes the HMAC of the concatenation of \p add_data and \p
|
||||
* data, and does with a code flow and memory access pattern that does not
|
||||
* depend on \p data_len_secret, but only on \p min_data_len and \p
|
||||
* max_data_len. In particular, this function always reads exactly \p
|
||||
* max_data_len bytes from \p data.
|
||||
*
|
||||
* \param ctx The HMAC context. It must have keys configured
|
||||
* with mbedtls_md_hmac_starts() and use one of the
|
||||
* following hashes: SHA-384, SHA-256, SHA-1 or MD-5.
|
||||
* It is reset using mbedtls_md_hmac_reset() after
|
||||
* the computation is complete to prepare for the
|
||||
* next computation.
|
||||
* \param add_data The first part of the message whose HMAC is being
|
||||
* calculated. This must point to a readable buffer
|
||||
* of \p add_data_len bytes.
|
||||
* \param add_data_len The length of \p add_data in bytes.
|
||||
* \param data The buffer containing the second part of the
|
||||
* message. This must point to a readable buffer
|
||||
* of \p max_data_len bytes.
|
||||
* \param data_len_secret The length of the data to process in \p data.
|
||||
* This must be no less than \p min_data_len and no
|
||||
* greater than \p max_data_len.
|
||||
* \param min_data_len The minimal length of the second part of the
|
||||
* message, read from \p data.
|
||||
* \param max_data_len The maximal length of the second part of the
|
||||
* message, read from \p data.
|
||||
* \param output The HMAC will be written here. This must point to
|
||||
* a writable buffer of sufficient size to hold the
|
||||
* HMAC value.
|
||||
*
|
||||
* \retval 0 on success.
|
||||
* \retval #MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED
|
||||
* The hardware accelerator failed.
|
||||
*/
|
||||
#if defined(MBEDTLS_USE_PSA_CRYPTO)
|
||||
int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
|
||||
psa_algorithm_t mac_alg,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output);
|
||||
#else
|
||||
int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output);
|
||||
#endif /* defined(MBEDTLS_USE_PSA_CRYPTO) */
|
||||
#endif /* MBEDTLS_TEST_HOOKS && defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC) */
|
||||
|
||||
#endif /* ssl_misc.h */
|
||||
|
|
|
@ -54,6 +54,234 @@
|
|||
psa_generic_status_to_mbedtls)
|
||||
#endif
|
||||
|
||||
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
|
||||
|
||||
#if defined(MBEDTLS_USE_PSA_CRYPTO)
|
||||
|
||||
#if defined(PSA_WANT_ALG_SHA_384)
|
||||
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
|
||||
#elif defined(PSA_WANT_ALG_SHA_256)
|
||||
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
|
||||
#else /* See check_config.h */
|
||||
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
|
||||
#endif
|
||||
|
||||
MBEDTLS_STATIC_TESTABLE
|
||||
int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
|
||||
psa_algorithm_t mac_alg,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output)
|
||||
{
|
||||
/*
|
||||
* This function breaks the HMAC abstraction and uses psa_hash_clone()
|
||||
* extension in order to get constant-flow behaviour.
|
||||
*
|
||||
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
|
||||
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
|
||||
* patterns (see RFC 2104, sec. 2).
|
||||
*
|
||||
* We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
|
||||
* hashing up to minlen, then cloning the context, and for each byte up
|
||||
* to maxlen finishing up the hash computation, keeping only the
|
||||
* correct result.
|
||||
*
|
||||
* Then we only need to compute HASH(okey + inner_hash) and we're done.
|
||||
*/
|
||||
psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
|
||||
const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
|
||||
unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
|
||||
const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
|
||||
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
|
||||
size_t hash_length;
|
||||
|
||||
unsigned char aux_out[PSA_HASH_MAX_SIZE];
|
||||
psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
|
||||
size_t offset;
|
||||
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
size_t mac_key_length;
|
||||
size_t i;
|
||||
|
||||
#define PSA_CHK(func_call) \
|
||||
do { \
|
||||
status = (func_call); \
|
||||
if (status != PSA_SUCCESS) \
|
||||
goto cleanup; \
|
||||
} while (0)
|
||||
|
||||
/* Export MAC key
|
||||
* We assume key length is always exactly the output size
|
||||
* which is never more than the block size, thus we use block_size
|
||||
* as the key buffer size.
|
||||
*/
|
||||
PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
|
||||
|
||||
/* Calculate ikey */
|
||||
for (i = 0; i < mac_key_length; i++) {
|
||||
key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
|
||||
}
|
||||
for (; i < block_size; ++i) {
|
||||
key_buf[i] = 0x36;
|
||||
}
|
||||
|
||||
PSA_CHK(psa_hash_setup(&operation, hash_alg));
|
||||
|
||||
/* Now compute inner_hash = HASH(ikey + msg) */
|
||||
PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
|
||||
PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
|
||||
PSA_CHK(psa_hash_update(&operation, data, min_data_len));
|
||||
|
||||
/* Fill the hash buffer in advance with something that is
|
||||
* not a valid hash (barring an attack on the hash and
|
||||
* deliberately-crafted input), in case the caller doesn't
|
||||
* check the return status properly. */
|
||||
memset(output, '!', hash_size);
|
||||
|
||||
/* For each possible length, compute the hash up to that point */
|
||||
for (offset = min_data_len; offset <= max_data_len; offset++) {
|
||||
PSA_CHK(psa_hash_clone(&operation, &aux_operation));
|
||||
PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
|
||||
PSA_HASH_MAX_SIZE, &hash_length));
|
||||
/* Keep only the correct inner_hash in the output buffer */
|
||||
mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
|
||||
offset, data_len_secret);
|
||||
|
||||
if (offset < max_data_len) {
|
||||
PSA_CHK(psa_hash_update(&operation, data + offset, 1));
|
||||
}
|
||||
}
|
||||
|
||||
/* Abort current operation to prepare for final operation */
|
||||
PSA_CHK(psa_hash_abort(&operation));
|
||||
|
||||
/* Calculate okey */
|
||||
for (i = 0; i < mac_key_length; i++) {
|
||||
key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
|
||||
}
|
||||
for (; i < block_size; ++i) {
|
||||
key_buf[i] = 0x5C;
|
||||
}
|
||||
|
||||
/* Now compute HASH(okey + inner_hash) */
|
||||
PSA_CHK(psa_hash_setup(&operation, hash_alg));
|
||||
PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
|
||||
PSA_CHK(psa_hash_update(&operation, output, hash_size));
|
||||
PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
|
||||
|
||||
#undef PSA_CHK
|
||||
|
||||
cleanup:
|
||||
mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
|
||||
mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
|
||||
|
||||
psa_hash_abort(&operation);
|
||||
psa_hash_abort(&aux_operation);
|
||||
return PSA_TO_MBEDTLS_ERR(status);
|
||||
}
|
||||
|
||||
#undef MAX_HASH_BLOCK_LENGTH
|
||||
|
||||
#else
|
||||
MBEDTLS_STATIC_TESTABLE
|
||||
int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
|
||||
const unsigned char *add_data,
|
||||
size_t add_data_len,
|
||||
const unsigned char *data,
|
||||
size_t data_len_secret,
|
||||
size_t min_data_len,
|
||||
size_t max_data_len,
|
||||
unsigned char *output)
|
||||
{
|
||||
/*
|
||||
* This function breaks the HMAC abstraction and uses the md_clone()
|
||||
* extension to the MD API in order to get constant-flow behaviour.
|
||||
*
|
||||
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
|
||||
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
|
||||
* patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
|
||||
*
|
||||
* We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
|
||||
* minlen, then cloning the context, and for each byte up to maxlen
|
||||
* finishing up the hash computation, keeping only the correct result.
|
||||
*
|
||||
* Then we only need to compute HASH(okey + inner_hash) and we're done.
|
||||
*/
|
||||
const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
|
||||
/* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
|
||||
* all of which have the same block size except SHA-384. */
|
||||
const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
|
||||
const unsigned char * const ikey = ctx->hmac_ctx;
|
||||
const unsigned char * const okey = ikey + block_size;
|
||||
const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
|
||||
|
||||
unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
|
||||
mbedtls_md_context_t aux;
|
||||
size_t offset;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
|
||||
mbedtls_md_init(&aux);
|
||||
|
||||
#define MD_CHK(func_call) \
|
||||
do { \
|
||||
ret = (func_call); \
|
||||
if (ret != 0) \
|
||||
goto cleanup; \
|
||||
} while (0)
|
||||
|
||||
MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
|
||||
|
||||
/* After hmac_start() of hmac_reset(), ikey has already been hashed,
|
||||
* so we can start directly with the message */
|
||||
MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
|
||||
MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
|
||||
|
||||
/* Fill the hash buffer in advance with something that is
|
||||
* not a valid hash (barring an attack on the hash and
|
||||
* deliberately-crafted input), in case the caller doesn't
|
||||
* check the return status properly. */
|
||||
memset(output, '!', hash_size);
|
||||
|
||||
/* For each possible length, compute the hash up to that point */
|
||||
for (offset = min_data_len; offset <= max_data_len; offset++) {
|
||||
MD_CHK(mbedtls_md_clone(&aux, ctx));
|
||||
MD_CHK(mbedtls_md_finish(&aux, aux_out));
|
||||
/* Keep only the correct inner_hash in the output buffer */
|
||||
mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
|
||||
offset, data_len_secret);
|
||||
|
||||
if (offset < max_data_len) {
|
||||
MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
|
||||
}
|
||||
}
|
||||
|
||||
/* The context needs to finish() before it starts() again */
|
||||
MD_CHK(mbedtls_md_finish(ctx, aux_out));
|
||||
|
||||
/* Now compute HASH(okey + inner_hash) */
|
||||
MD_CHK(mbedtls_md_starts(ctx));
|
||||
MD_CHK(mbedtls_md_update(ctx, okey, block_size));
|
||||
MD_CHK(mbedtls_md_update(ctx, output, hash_size));
|
||||
MD_CHK(mbedtls_md_finish(ctx, output));
|
||||
|
||||
/* Done, get ready for next time */
|
||||
MD_CHK(mbedtls_md_hmac_reset(ctx));
|
||||
|
||||
#undef MD_CHK
|
||||
|
||||
cleanup:
|
||||
mbedtls_md_free(&aux);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_USE_PSA_CRYPTO */
|
||||
|
||||
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
|
||||
|
||||
static uint32_t ssl_get_hs_total_len(mbedtls_ssl_context const *ssl);
|
||||
|
||||
/*
|
||||
|
|
Loading…
Reference in a new issue