Cache pre-computed points for ecp_mul()

Up to 1.25 speedup on ECDSA sign for small curves, but mainly useful as a
preparation for fixed-point mult (a few prototypes changed in constness).
This commit is contained in:
Manuel Pégourié-Gonnard 2013-09-17 19:13:10 +02:00 committed by Paul Bakker
parent 56cd319f0e
commit 161ef968db
6 changed files with 147 additions and 47 deletions

View file

@ -62,7 +62,7 @@ ecdh_context;
* \return 0 if successful,
* or a POLARSSL_ERR_ECP_XXX or POLARSSL_MPI_XXX error code
*/
int ecdh_gen_public( const ecp_group *grp, mpi *d, ecp_point *Q,
int ecdh_gen_public( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
@ -83,7 +83,7 @@ int ecdh_gen_public( const ecp_group *grp, mpi *d, ecp_point *Q,
* countermeasures against potential elaborate timing
* attacks, see \c ecp_mul() for details.
*/
int ecdh_compute_shared( const ecp_group *grp, mpi *z,
int ecdh_compute_shared( ecp_group *grp, mpi *z,
const ecp_point *Q, const mpi *d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );

View file

@ -63,7 +63,7 @@ extern "C" {
* \return 0 if successful,
* or a POLARSSL_ERR_ECP_XXX or POLARSSL_MPI_XXX error code
*/
int ecdsa_sign( const ecp_group *grp, mpi *r, mpi *s,
int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s,
const mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
@ -81,7 +81,7 @@ int ecdsa_sign( const ecp_group *grp, mpi *r, mpi *s,
* POLARSSL_ERR_ECP_BAD_INPUT_DATA if signature is invalid
* or a POLARSSL_ERR_ECP_XXX or POLARSSL_MPI_XXX error code
*/
int ecdsa_verify( const ecp_group *grp,
int ecdsa_verify( ecp_group *grp,
const unsigned char *buf, size_t blen,
const ecp_point *Q, const mpi *r, const mpi *s);

View file

@ -155,16 +155,15 @@ ecp_keypair;
/*
* Maximum window size (actually, NAF width) used for point multipliation.
* Default: 7.
* Default: 8.
* Minimum value: 2. Maximum value: 8.
*
* Result is an array of at most ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
* points used for point multiplication, so at most 64 by default.
* In practice, most curves will use less precomputed points.
* points used for point multiplication.
*
* Reduction in size may reduce speed for big curves.
*/
#define POLARSSL_ECP_WINDOW_SIZE 7 /**< Maximum NAF width used. */
#define POLARSSL_ECP_WINDOW_SIZE 8 /**< Maximum NAF width used. */
/*
* Point formats, from RFC 4492's enum ECPointFormat
@ -472,7 +471,7 @@ int ecp_sub( const ecp_group *grp, ecp_point *R,
* has very low overhead, it is recommended to always provide
* a non-NULL f_rng parameter when using secret inputs.
*/
int ecp_mul( const ecp_group *grp, ecp_point *R,
int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
@ -531,7 +530,7 @@ int ecp_check_privkey( const ecp_group *grp, const mpi *d );
* in order to ease use with other structures such as
* ecdh_context of ecdsa_context.
*/
int ecp_gen_keypair( const ecp_group *grp, mpi *d, ecp_point *Q,
int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );

View file

@ -39,7 +39,7 @@
/*
* Generate public key: simple wrapper around ecp_gen_keypair
*/
int ecdh_gen_public( const ecp_group *grp, mpi *d, ecp_point *Q,
int ecdh_gen_public( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
@ -49,7 +49,7 @@ int ecdh_gen_public( const ecp_group *grp, mpi *d, ecp_point *Q,
/*
* Compute shared secret (SEC1 3.3.1)
*/
int ecdh_compute_shared( const ecp_group *grp, mpi *z,
int ecdh_compute_shared( ecp_group *grp, mpi *z,
const ecp_point *Q, const mpi *d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )

View file

@ -51,7 +51,7 @@ static int derive_mpi( const ecp_group *grp, mpi *x,
* Compute ECDSA signature of a hashed message (SEC1 4.1.3)
* Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
*/
int ecdsa_sign( const ecp_group *grp, mpi *r, mpi *s,
int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s,
const mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
@ -117,7 +117,7 @@ cleanup:
* Verify ECDSA signature of hashed message (SEC1 4.1.4)
* Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
*/
int ecdsa_verify( const ecp_group *grp,
int ecdsa_verify( ecp_group *grp,
const unsigned char *buf, size_t blen,
const ecp_point *Q, const mpi *r, const mpi *s)
{

View file

@ -149,6 +149,8 @@ void ecp_point_free( ecp_point *pt )
*/
void ecp_group_free( ecp_group *grp )
{
size_t i;
if( grp == NULL )
return;
@ -157,6 +159,13 @@ void ecp_group_free( ecp_group *grp )
ecp_point_free( &grp->G );
mpi_free( &grp->N );
if( grp->T != NULL )
{
for( i = 0; i < grp->T_size; i++ )
ecp_point_free( &grp->T[i] );
polarssl_free( grp->T );
}
memset( grp, 0, sizeof( ecp_group ) );
}
@ -1279,34 +1288,53 @@ cleanup:
* This function executes a fixed number of operations for
* random m in the range 0 .. 2^nbits - 1.
*
* As an additional countermeasure against potential elaborate timing attacks,
* we randomize coordinates after each addition. This was suggested as a
* As an additional countermeasure against potential timing attacks,
* we randomize coordinates before each addition. This was suggested as a
* countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
* we use jacobian coordinates, not standard projective coordinates).
*/
int ecp_mul( const ecp_group *grp, ecp_point *R,
int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
unsigned char w, m_is_odd;
unsigned char w, m_is_odd, p_eq_g;
size_t pre_len, naf_len, i, j;
signed char naf[ MAX_NAF_LEN ];
ecp_point Q, T[ MAX_PRE_LEN ];
ecp_point Q, *T = NULL, S[2];
mpi M;
if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
w = grp->nbits >= 521 ? 6 :
grp->nbits >= 224 ? 5 :
4;
mpi_init( &M );
ecp_point_init( &Q );
ecp_point_init( &S[0] );
ecp_point_init( &S[1] );
/*
* Check if P == G
*/
p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
/*
* If P == G, pre-compute a lot of points: this will be re-used later,
* otherwise, choose window size depending on curve size
*/
if( p_eq_g )
w = POLARSSL_ECP_WINDOW_SIZE;
else
w = grp->nbits >= 512 ? 6 :
grp->nbits >= 224 ? 5 :
4;
/*
* Make sure w is within the limits.
* The last test ensures that none of the precomputed points is zero,
* which wouldn't be handled correctly by ecp_normalize_many().
* It is only useful for very small curves, as used in the test suite.
* It is only useful for very small curves as used in the test suite.
*/
if( w > POLARSSL_ECP_WINDOW_SIZE )
w = POLARSSL_ECP_WINDOW_SIZE;
@ -1316,25 +1344,54 @@ int ecp_mul( const ecp_group *grp, ecp_point *R,
pre_len = 1 << ( w - 1 );
naf_len = grp->nbits / w + 1;
mpi_init( &M );
ecp_point_init( &Q );
for( i = 0; i < pre_len; i++ )
ecp_point_init( &T[i] );
/*
* Prepare precomputed points: if P == G we want to
* use grp->T if already initialized, or initiliaze it.
*/
if( ! p_eq_g || grp->T == NULL )
{
if( ( T = polarssl_malloc( pre_len * sizeof( ecp_point ) ) ) == NULL )
{
ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
goto cleanup;
}
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
for( i = 0; i < pre_len; i++ )
ecp_point_init( &T[i] );
MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
if( p_eq_g )
{
grp->T = T;
grp->T_size = pre_len;
}
}
else
{
T = grp->T;
/* Should never happen, but we want to be extra sure */
if( pre_len != grp->T_size )
{
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
}
/*
* Make sure M is odd:
* later we'll get m * P by subtracting * P or 2 * P to M * P.
* Make sure M is odd (M = m + 1 or M = m + 2)
* later we'll get m * P by subtracting P or 2 * P to M * P.
*/
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
MPI_CHK( mpi_copy( &M, m ) );
MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
/*
* Compute the fixed-pattern NAF and precompute odd multiples
* Compute the fixed-pattern NAF of M
*/
MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
/*
* Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
@ -1348,6 +1405,10 @@ int ecp_mul( const ecp_group *grp, ecp_point *R,
i = naf_len - 1;
while( 1 )
{
/* Countermeasure (see comments above) */
if( f_rng != NULL )
ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
if( naf[i] < 0 )
{
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
@ -1357,10 +1418,6 @@ int ecp_mul( const ecp_group *grp, ecp_point *R,
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
}
/* Countermeasure (see comments above) */
if( f_rng != NULL )
ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
if( i == 0 )
break;
i--;
@ -1372,20 +1429,26 @@ int ecp_mul( const ecp_group *grp, ecp_point *R,
}
/*
* Now get m * P from M * P.
* Since we don't need T[] any more, we can recycle it:
* we already have T[0] = P, now set T[1] = 2 * P.
* Now get m * P from M * P
*/
MPI_CHK( ecp_add( grp, &T[1], P, P ) );
MPI_CHK( ecp_sub( grp, R, &Q, &T[m_is_odd] ) );
MPI_CHK( ecp_copy( &S[0], P ) );
MPI_CHK( ecp_add( grp, &S[1], P, P ) );
MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
cleanup:
mpi_free( &M );
if( T != NULL && ! p_eq_g )
{
for( i = 0; i < pre_len; i++ )
ecp_point_free( &T[i] );
polarssl_free( T );
}
ecp_point_free( &S[1] );
ecp_point_free( &S[0] );
ecp_point_free( &Q );
for( i = 0; i < pre_len; i++ )
ecp_point_free( &T[i] );
mpi_free( &M );
return( ret );
}
@ -1450,7 +1513,7 @@ int ecp_check_privkey( const ecp_group *grp, const mpi *d )
/*
* Generate a keypair (SEC1 3.2.1)
*/
int ecp_gen_keypair( const ecp_group *grp, mpi *d, ecp_point *Q,
int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
@ -1485,7 +1548,7 @@ int ecp_self_test( int verbose )
int ret;
size_t i;
ecp_group grp;
ecp_point R;
ecp_point R, P;
mpi m;
unsigned long add_c_prev, dbl_c_prev;
const char *exponents[] =
@ -1501,6 +1564,7 @@ int ecp_self_test( int verbose )
ecp_group_init( &grp );
ecp_point_init( &R );
ecp_point_init( &P );
mpi_init( &m );
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
@ -1526,7 +1590,11 @@ int ecp_self_test( int verbose )
#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
if( verbose != 0 )
printf( " ECP test #1 (resistance to simple timing attacks): " );
printf( " ECP test #1 (constant op_count, base point G): " );
/* Do a dummy multiplication first to trigger precomputation */
MPI_CHK( mpi_lset( &m, 2 ) );
MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
add_count = 0;
dbl_count = 0;
@ -1556,6 +1624,38 @@ int ecp_self_test( int verbose )
if( verbose != 0 )
printf( "passed\n" );
if( verbose != 0 )
printf( " ECP test #2 (constant op_count, other point): " );
/* We computed P = 2G last time, use it */
add_count = 0;
dbl_count = 0;
MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
{
add_c_prev = add_count;
dbl_c_prev = dbl_count;
add_count = 0;
dbl_count = 0;
MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
if( add_count != add_c_prev || dbl_count != dbl_c_prev )
{
if( verbose != 0 )
printf( "failed (%zu)\n", i );
ret = 1;
goto cleanup;
}
}
if( verbose != 0 )
printf( "passed\n" );
cleanup:
if( ret < 0 && verbose != 0 )
@ -1563,6 +1663,7 @@ cleanup:
ecp_group_free( &grp );
ecp_point_free( &R );
ecp_point_free( &P );
mpi_free( &m );
if( verbose != 0 )