mbedtls/tests/suites/test_suite_asn1parse.function

775 lines
24 KiB
C
Raw Normal View History

/* BEGIN_HEADER */
#include <errno.h>
#include <stdlib.h>
#include <limits.h>
#include "mbedtls/bignum.h"
#include "mbedtls/asn1.h"
#if defined(MBEDTLS_ASN1_WRITE_C)
#include "mbedtls/asn1write.h"
#endif
/* Used internally to report an error that indicates a bug in a parsing function. */
#define ERR_PARSE_INCONSISTENCY INT_MAX
/* Use this magic value in some tests to indicate that the expected result
* should not be checked. */
#define UNPREDICTABLE_RESULT 0x5552
static int nested_parse(unsigned char **const p,
const unsigned char *const end)
{
int ret;
size_t len = 0;
size_t len2 = 0;
unsigned char *const start = *p;
unsigned char *content_start;
unsigned char tag;
/* First get the length, skipping over the tag. */
content_start = start + 1;
ret = mbedtls_asn1_get_len(&content_start, end, &len);
TEST_ASSERT(content_start <= end);
if (ret != 0) {
return ret;
}
/* Since we have a valid element start (tag and length), retrieve and
* check the tag. */
tag = start[0];
TEST_EQUAL(mbedtls_asn1_get_tag(p, end, &len2, tag ^ 1),
MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
*p = start;
TEST_EQUAL(mbedtls_asn1_get_tag(p, end, &len2, tag), 0);
TEST_EQUAL(len, len2);
TEST_ASSERT(*p == content_start);
*p = content_start;
switch (tag & 0x1f) {
case MBEDTLS_ASN1_BOOLEAN:
{
int val = -257;
*p = start;
ret = mbedtls_asn1_get_bool(p, end, &val);
if (ret == 0) {
TEST_ASSERT(val == 0 || val == 1);
}
break;
}
case MBEDTLS_ASN1_INTEGER:
{
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi mpi;
mbedtls_mpi_init(&mpi);
*p = start;
ret = mbedtls_asn1_get_mpi(p, end, &mpi);
mbedtls_mpi_free(&mpi);
#else
*p = start + 1;
ret = mbedtls_asn1_get_len(p, end, &len);
*p += len;
#endif
/* If we're sure that the number fits in an int, also
* call mbedtls_asn1_get_int(). */
if (ret == 0 && len < sizeof(int)) {
int val = -257;
unsigned char *q = start;
ret = mbedtls_asn1_get_int(&q, end, &val);
TEST_ASSERT(*p == q);
}
break;
}
case MBEDTLS_ASN1_BIT_STRING:
{
mbedtls_asn1_bitstring bs;
*p = start;
ret = mbedtls_asn1_get_bitstring(p, end, &bs);
break;
}
case MBEDTLS_ASN1_SEQUENCE:
{
while (*p <= end && *p < content_start + len && ret == 0) {
ret = nested_parse(p, content_start + len);
}
break;
}
case MBEDTLS_ASN1_OCTET_STRING:
case MBEDTLS_ASN1_NULL:
case MBEDTLS_ASN1_OID:
case MBEDTLS_ASN1_UTF8_STRING:
case MBEDTLS_ASN1_SET:
case MBEDTLS_ASN1_PRINTABLE_STRING:
case MBEDTLS_ASN1_T61_STRING:
case MBEDTLS_ASN1_IA5_STRING:
case MBEDTLS_ASN1_UTC_TIME:
case MBEDTLS_ASN1_GENERALIZED_TIME:
case MBEDTLS_ASN1_UNIVERSAL_STRING:
case MBEDTLS_ASN1_BMP_STRING:
default:
/* No further testing implemented for this tag. */
*p += len;
return 0;
}
TEST_ASSERT(*p <= end);
return ret;
exit:
return ERR_PARSE_INCONSISTENCY;
}
int get_len_step(const data_t *input, size_t buffer_size,
size_t actual_length)
{
unsigned char *buf = NULL;
unsigned char *p = NULL;
unsigned char *end;
size_t parsed_length;
int ret;
mbedtls_test_set_step(buffer_size);
/* Allocate a new buffer of exactly the length to parse each time.
* This gives memory sanitizers a chance to catch buffer overreads. */
if (buffer_size == 0) {
ASSERT_ALLOC(buf, 1);
end = buf + 1;
p = end;
} else {
ASSERT_ALLOC_WEAK(buf, buffer_size);
if (buffer_size > input->len) {
memcpy(buf, input->x, input->len);
memset(buf + input->len, 'A', buffer_size - input->len);
} else {
memcpy(buf, input->x, buffer_size);
}
p = buf;
end = buf + buffer_size;
}
ret = mbedtls_asn1_get_len(&p, end, &parsed_length);
if (buffer_size >= input->len + actual_length) {
TEST_EQUAL(ret, 0);
TEST_ASSERT(p == buf + input->len);
TEST_EQUAL(parsed_length, actual_length);
} else {
TEST_EQUAL(ret, MBEDTLS_ERR_ASN1_OUT_OF_DATA);
}
mbedtls_free(buf);
return 1;
exit:
mbedtls_free(buf);
return 0;
}
typedef struct {
const unsigned char *input_start;
const char *description;
} traverse_state_t;
/* Value returned by traverse_callback if description runs out. */
#define RET_TRAVERSE_STOP 1
/* Value returned by traverse_callback if description has an invalid format
* (see traverse_sequence_of). */
#define RET_TRAVERSE_ERROR 2
static int traverse_callback(void *ctx, int tag,
unsigned char *content, size_t len)
{
traverse_state_t *state = ctx;
size_t offset;
const char *rest = state->description;
unsigned long n;
TEST_ASSERT(content > state->input_start);
offset = content - state->input_start;
mbedtls_test_set_step(offset);
if (*rest == 0) {
return RET_TRAVERSE_STOP;
}
n = strtoul(rest, (char **) &rest, 0);
TEST_EQUAL(n, offset);
TEST_EQUAL(*rest, ',');
++rest;
n = strtoul(rest, (char **) &rest, 0);
TEST_EQUAL(n, (unsigned) tag);
TEST_EQUAL(*rest, ',');
++rest;
n = strtoul(rest, (char **) &rest, 0);
TEST_EQUAL(n, len);
if (*rest == ',') {
++rest;
}
state->description = rest;
return 0;
exit:
return RET_TRAVERSE_ERROR;
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_ASN1_PARSE_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void parse_prefixes(const data_t *input,
int full_result,
int overfull_result)
{
/* full_result: expected result from parsing the given string. */
/* overfull_result: expected_result from parsing the given string plus
* some trailing garbage. This may be UNPREDICTABLE_RESULT to accept
* any result: use this for invalid inputs that may or may not become
* valid depending on what the trailing garbage is. */
unsigned char *buf = NULL;
unsigned char *p = NULL;
size_t buffer_size;
int ret;
/* Test every prefix of the input, except the empty string.
* The first byte of the string is the tag. Without a tag byte,
* we wouldn't know what to parse the input as.
* Also test the input followed by an extra byte.
*/
for (buffer_size = 1; buffer_size <= input->len + 1; buffer_size++) {
mbedtls_test_set_step(buffer_size);
/* Allocate a new buffer of exactly the length to parse each time.
* This gives memory sanitizers a chance to catch buffer overreads. */
ASSERT_ALLOC(buf, buffer_size);
memcpy(buf, input->x, buffer_size);
p = buf;
ret = nested_parse(&p, buf + buffer_size);
if (ret == ERR_PARSE_INCONSISTENCY) {
goto exit;
}
if (buffer_size < input->len) {
TEST_EQUAL(ret, MBEDTLS_ERR_ASN1_OUT_OF_DATA);
} else if (buffer_size == input->len) {
TEST_EQUAL(ret, full_result);
} else { /* ( buffer_size > input->len ) */
if (overfull_result != UNPREDICTABLE_RESULT) {
TEST_EQUAL(ret, overfull_result);
}
}
if (ret == 0) {
TEST_ASSERT(p == buf + input->len);
}
mbedtls_free(buf);
buf = NULL;
}
exit:
mbedtls_free(buf);
}
/* END_CASE */
/* BEGIN_CASE */
void get_len(const data_t *input, int actual_length_arg)
{
size_t actual_length = actual_length_arg;
size_t buffer_size;
/* Test prefixes of a buffer containing the given length string
* followed by `actual_length` bytes of payload. To save a bit of
* time, we skip some "boring" prefixes: we don't test prefixes where
* the payload is truncated more than one byte away from either end,
* and we only test the empty string on a 1-byte input.
*/
for (buffer_size = 1; buffer_size <= input->len + 1; buffer_size++) {
if (!get_len_step(input, buffer_size, actual_length)) {
goto exit;
}
}
if (!get_len_step(input, input->len + actual_length - 1, actual_length)) {
goto exit;
}
if (!get_len_step(input, input->len + actual_length, actual_length)) {
goto exit;
}
}
/* END_CASE */
/* BEGIN_CASE */
void get_boolean(const data_t *input,
int expected_value, int expected_result)
{
unsigned char *p = input->x;
int val;
int ret;
ret = mbedtls_asn1_get_bool(&p, input->x + input->len, &val);
TEST_EQUAL(ret, expected_result);
if (expected_result == 0) {
TEST_EQUAL(val, expected_value);
TEST_ASSERT(p == input->x + input->len);
}
}
/* END_CASE */
/* BEGIN_CASE */
void empty_integer(const data_t *input)
{
unsigned char *p;
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi actual_mpi;
#endif
int val;
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi_init(&actual_mpi);
#endif
/* An INTEGER with no content is not valid. */
p = input->x;
TEST_EQUAL(mbedtls_asn1_get_int(&p, input->x + input->len, &val),
MBEDTLS_ERR_ASN1_INVALID_LENGTH);
#if defined(MBEDTLS_BIGNUM_C)
/* INTEGERs are sometimes abused as bitstrings, so the library accepts
* an INTEGER with empty content and gives it the value 0. */
p = input->x;
TEST_EQUAL(mbedtls_asn1_get_mpi(&p, input->x + input->len, &actual_mpi),
0);
TEST_EQUAL(mbedtls_mpi_cmp_int(&actual_mpi, 0), 0);
#endif
exit:
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi_free(&actual_mpi);
#endif
/*empty cleanup in some configurations*/;
}
/* END_CASE */
/* BEGIN_CASE */
void get_integer(const data_t *input,
const char *expected_hex, int expected_result)
{
unsigned char *p;
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi expected_mpi;
mbedtls_mpi actual_mpi;
mbedtls_mpi complement;
int expected_result_for_mpi = expected_result;
#endif
long expected_value;
int expected_result_for_int = expected_result;
int val;
int ret;
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi_init(&expected_mpi);
mbedtls_mpi_init(&actual_mpi);
mbedtls_mpi_init(&complement);
#endif
errno = 0;
expected_value = strtol(expected_hex, NULL, 16);
if (expected_result == 0 &&
(errno == ERANGE
#if LONG_MAX > INT_MAX
|| expected_value > INT_MAX || expected_value < INT_MIN
#endif
)) {
/* The library returns the dubious error code INVALID_LENGTH
* for integers that are out of range. */
expected_result_for_int = MBEDTLS_ERR_ASN1_INVALID_LENGTH;
}
if (expected_result == 0 && expected_value < 0) {
/* The library does not support negative INTEGERs and
* returns the dubious error code INVALID_LENGTH.
* Test that we preserve the historical behavior. If we
* decide to change the behavior, we'll also change this test. */
expected_result_for_int = MBEDTLS_ERR_ASN1_INVALID_LENGTH;
}
p = input->x;
ret = mbedtls_asn1_get_int(&p, input->x + input->len, &val);
TEST_EQUAL(ret, expected_result_for_int);
if (ret == 0) {
TEST_EQUAL(val, expected_value);
TEST_ASSERT(p == input->x + input->len);
}
#if defined(MBEDTLS_BIGNUM_C)
ret = mbedtls_test_read_mpi(&expected_mpi, expected_hex);
TEST_ASSERT(ret == 0 || ret == MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
if (ret == MBEDTLS_ERR_MPI_BAD_INPUT_DATA) {
/* The data overflows the maximum MPI size. */
expected_result_for_mpi = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
}
p = input->x;
ret = mbedtls_asn1_get_mpi(&p, input->x + input->len, &actual_mpi);
TEST_EQUAL(ret, expected_result_for_mpi);
if (ret == 0) {
if (expected_value >= 0) {
TEST_ASSERT(mbedtls_mpi_cmp_mpi(&actual_mpi,
&expected_mpi) == 0);
} else {
/* The library ignores the sign bit in ASN.1 INTEGERs
* (which makes sense insofar as INTEGERs are sometimes
* abused as bit strings), so the result of parsing them
* is a positive integer such that expected_mpi +
* actual_mpi = 2^n where n is the length of the content
* of the INTEGER. (Leading ff octets don't matter for the
* expected value, but they matter for the actual value.)
* Test that we don't change from this behavior. If we
* decide to fix the library to change the behavior on
* negative INTEGERs, we'll fix this test code. */
unsigned char *q = input->x + 1;
size_t len;
TEST_ASSERT(mbedtls_asn1_get_len(&q, input->x + input->len,
&len) == 0);
TEST_ASSERT(mbedtls_mpi_lset(&complement, 1) == 0);
TEST_ASSERT(mbedtls_mpi_shift_l(&complement, len * 8) == 0);
TEST_ASSERT(mbedtls_mpi_add_mpi(&complement, &complement,
&expected_mpi) == 0);
TEST_ASSERT(mbedtls_mpi_cmp_mpi(&complement,
&actual_mpi) == 0);
}
TEST_ASSERT(p == input->x + input->len);
}
#endif
exit:
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi_free(&expected_mpi);
mbedtls_mpi_free(&actual_mpi);
mbedtls_mpi_free(&complement);
#endif
/*empty cleanup in some configurations*/;
}
/* END_CASE */
/* BEGIN_CASE */
void get_enum(const data_t *input,
const char *expected_hex, int expected_result)
{
unsigned char *p;
long expected_value;
int expected_result_for_enum = expected_result;
int val;
int ret;
errno = 0;
expected_value = strtol(expected_hex, NULL, 16);
if (expected_result == 0 &&
(errno == ERANGE
#if LONG_MAX > INT_MAX
|| expected_value > INT_MAX || expected_value < INT_MIN
#endif
)) {
/* The library returns the dubious error code INVALID_LENGTH
* for integers that are out of range. */
expected_result_for_enum = MBEDTLS_ERR_ASN1_INVALID_LENGTH;
}
if (expected_result == 0 && expected_value < 0) {
/* The library does not support negative INTEGERs and
* returns the dubious error code INVALID_LENGTH.
* Test that we preserve the historical behavior. If we
* decide to change the behavior, we'll also change this test. */
expected_result_for_enum = MBEDTLS_ERR_ASN1_INVALID_LENGTH;
}
p = input->x;
ret = mbedtls_asn1_get_enum(&p, input->x + input->len, &val);
TEST_EQUAL(ret, expected_result_for_enum);
if (ret == 0) {
TEST_EQUAL(val, expected_value);
TEST_ASSERT(p == input->x + input->len);
}
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_BIGNUM_C */
void get_mpi_too_large()
{
unsigned char *buf = NULL;
unsigned char *p;
mbedtls_mpi actual_mpi;
size_t too_many_octets =
MBEDTLS_MPI_MAX_LIMBS * sizeof(mbedtls_mpi_uint) + 1;
size_t size = too_many_octets + 6;
mbedtls_mpi_init(&actual_mpi);
ASSERT_ALLOC(buf, size);
buf[0] = 0x02; /* tag: INTEGER */
buf[1] = 0x84; /* 4-octet length */
buf[2] = (too_many_octets >> 24) & 0xff;
buf[3] = (too_many_octets >> 16) & 0xff;
buf[4] = (too_many_octets >> 8) & 0xff;
buf[5] = too_many_octets & 0xff;
buf[6] = 0x01; /* most significant octet */
p = buf;
TEST_EQUAL(mbedtls_asn1_get_mpi(&p, buf + size, &actual_mpi),
MBEDTLS_ERR_MPI_ALLOC_FAILED);
exit:
mbedtls_mpi_free(&actual_mpi);
mbedtls_free(buf);
}
/* END_CASE */
/* BEGIN_CASE */
void get_bitstring(const data_t *input,
int expected_length, int expected_unused_bits,
int expected_result, int expected_result_null)
{
mbedtls_asn1_bitstring bs = { 0xdead, 0x21, NULL };
unsigned char *p = input->x;
TEST_EQUAL(mbedtls_asn1_get_bitstring(&p, input->x + input->len, &bs),
expected_result);
if (expected_result == 0) {
TEST_EQUAL(bs.len, (size_t) expected_length);
TEST_EQUAL(bs.unused_bits, expected_unused_bits);
TEST_ASSERT(bs.p != NULL);
TEST_EQUAL(bs.p - input->x + bs.len, input->len);
TEST_ASSERT(p == input->x + input->len);
}
p = input->x;
TEST_EQUAL(mbedtls_asn1_get_bitstring_null(&p, input->x + input->len,
&bs.len),
expected_result_null);
if (expected_result_null == 0) {
TEST_EQUAL(bs.len, (size_t) expected_length);
if (expected_result == 0) {
TEST_ASSERT(p == input->x + input->len - bs.len);
}
}
}
/* END_CASE */
/* BEGIN_CASE */
void get_sequence_of(const data_t *input, int tag,
const char *description,
int expected_result)
{
/* The description string is a comma-separated list of integers.
* For each element in the SEQUENCE in input, description contains
* two integers: the offset of the element (offset from the start
* of input to the tag of the element) and the length of the
* element's contents.
* "offset1,length1,..." */
mbedtls_asn1_sequence head = { { 0, 0, NULL }, NULL };
mbedtls_asn1_sequence *cur;
unsigned char *p = input->x;
const char *rest = description;
unsigned long n;
unsigned int step = 0;
TEST_EQUAL(mbedtls_asn1_get_sequence_of(&p, input->x + input->len,
&head, tag),
expected_result);
if (expected_result == 0) {
TEST_ASSERT(p == input->x + input->len);
if (!*rest) {
TEST_EQUAL(head.buf.tag, 0);
TEST_ASSERT(head.buf.p == NULL);
TEST_EQUAL(head.buf.len, 0);
TEST_ASSERT(head.next == NULL);
} else {
cur = &head;
while (*rest) {
mbedtls_test_set_step(step);
TEST_ASSERT(cur != NULL);
TEST_EQUAL(cur->buf.tag, tag);
n = strtoul(rest, (char **) &rest, 0);
TEST_EQUAL(n, (size_t) (cur->buf.p - input->x));
++rest;
n = strtoul(rest, (char **) &rest, 0);
TEST_EQUAL(n, cur->buf.len);
if (*rest) {
++rest;
}
cur = cur->next;
++step;
}
TEST_ASSERT(cur == NULL);
}
}
exit:
mbedtls_asn1_sequence_free(head.next);
}
/* END_CASE */
/* BEGIN_CASE */
void traverse_sequence_of(const data_t *input,
int tag_must_mask, int tag_must_val,
int tag_may_mask, int tag_may_val,
const char *description,
int expected_result)
{
/* The description string is a comma-separated list of integers.
* For each element in the SEQUENCE in input, description contains
* three integers: the offset of the element's content (offset from
* the start of input to the content of the element), the element's tag,
* and the length of the element's contents.
* "offset1,tag1,length1,..." */
unsigned char *p = input->x;
traverse_state_t traverse_state = { input->x, description };
int ret;
ret = mbedtls_asn1_traverse_sequence_of(&p, input->x + input->len,
(uint8_t) tag_must_mask, (uint8_t) tag_must_val,
(uint8_t) tag_may_mask, (uint8_t) tag_may_val,
traverse_callback, &traverse_state);
if (ret == RET_TRAVERSE_ERROR) {
goto exit;
}
TEST_EQUAL(ret, expected_result);
TEST_EQUAL(*traverse_state.description, 0);
}
/* END_CASE */
/* BEGIN_CASE */
void get_alg(const data_t *input,
int oid_offset, int oid_length,
int params_tag, int params_offset, int params_length,
int total_length,
int expected_result)
{
mbedtls_asn1_buf oid = { -1, 0, NULL };
mbedtls_asn1_buf params = { -1, 0, NULL };
unsigned char *p = input->x;
int ret;
TEST_EQUAL(mbedtls_asn1_get_alg(&p, input->x + input->len,
&oid, &params),
expected_result);
if (expected_result == 0) {
TEST_EQUAL(oid.tag, MBEDTLS_ASN1_OID);
TEST_EQUAL(oid.p - input->x, oid_offset);
TEST_EQUAL(oid.len, (size_t) oid_length);
TEST_EQUAL(params.tag, params_tag);
if (params_offset != 0) {
TEST_EQUAL(params.p - input->x, params_offset);
} else {
TEST_ASSERT(params.p == NULL);
}
TEST_EQUAL(params.len, (size_t) params_length);
TEST_EQUAL(p - input->x, total_length);
}
ret = mbedtls_asn1_get_alg_null(&p, input->x + input->len, &oid);
if (expected_result == 0 && params_offset == 0) {
TEST_EQUAL(oid.tag, MBEDTLS_ASN1_OID);
TEST_EQUAL(oid.p - input->x, oid_offset);
TEST_EQUAL(oid.len, (size_t) oid_length);
TEST_EQUAL(p - input->x, total_length);
} else {
TEST_ASSERT(ret != 0);
}
}
/* END_CASE */
/* BEGIN_CASE */
void find_named_data(data_t *oid0, data_t *oid1, data_t *oid2, data_t *oid3,
data_t *needle, int from, int position)
{
mbedtls_asn1_named_data nd[] = {
{ { 0x06, oid0->len, oid0->x }, { 0, 0, NULL }, NULL, 0 },
{ { 0x06, oid1->len, oid1->x }, { 0, 0, NULL }, NULL, 0 },
{ { 0x06, oid2->len, oid2->x }, { 0, 0, NULL }, NULL, 0 },
{ { 0x06, oid3->len, oid3->x }, { 0, 0, NULL }, NULL, 0 },
};
mbedtls_asn1_named_data *pointers[ARRAY_LENGTH(nd) + 1];
size_t i;
const mbedtls_asn1_named_data *found;
for (i = 0; i < ARRAY_LENGTH(nd); i++) {
pointers[i] = &nd[i];
}
pointers[ARRAY_LENGTH(nd)] = NULL;
for (i = 0; i < ARRAY_LENGTH(nd); i++) {
nd[i].next = pointers[i+1];
}
found = mbedtls_asn1_find_named_data((const mbedtls_asn1_named_data *) pointers[from],
(const char *) needle->x,
needle->len);
TEST_ASSERT(found == pointers[position]);
}
/* END_CASE */
/* BEGIN_CASE depends_on:!MBEDTLS_DEPRECATED_REMOVED:!MBEDTLS_DEPRECATED_WARNING */
void free_named_data_null()
{
mbedtls_asn1_free_named_data(NULL);
goto exit; /* Silence unused label warning */
}
/* END_CASE */
/* BEGIN_CASE depends_on:!MBEDTLS_DEPRECATED_REMOVED:!MBEDTLS_DEPRECATED_WARNING */
void free_named_data(int with_oid, int with_val, int with_next)
{
mbedtls_asn1_named_data next =
{ { 0x06, 0, NULL }, { 0, 0xcafe, NULL }, NULL, 0 };
mbedtls_asn1_named_data head =
{ { 0x06, 0, NULL }, { 0, 0, NULL }, NULL, 0 };
if (with_oid) {
ASSERT_ALLOC(head.oid.p, 1);
}
if (with_val) {
ASSERT_ALLOC(head.val.p, 1);
}
if (with_next) {
head.next = &next;
}
mbedtls_asn1_free_named_data(&head);
TEST_ASSERT(head.oid.p == NULL);
TEST_ASSERT(head.val.p == NULL);
TEST_ASSERT(head.next == NULL);
TEST_ASSERT(next.val.len == 0xcafe);
exit:
mbedtls_free(head.oid.p);
mbedtls_free(head.val.p);
}
/* END_CASE */
/* BEGIN_CASE */
void free_named_data_list(int length)
{
mbedtls_asn1_named_data *head = NULL;
int i;
for (i = 0; i < length; i++) {
mbedtls_asn1_named_data *new = NULL;
ASSERT_ALLOC(new, 1);
new->next = head;
head = new;
}
mbedtls_asn1_free_named_data_list(&head);
TEST_ASSERT(head == NULL);
/* Most of the point of the test is that it doesn't leak memory.
* So this test is only really useful under a memory leak detection
* framework. */
exit:
mbedtls_asn1_free_named_data_list(&head);
}
/* END_CASE */