Issue 246: Dynamic_images.* needs to be 64-bit ready. Created types that are typedefed to the appropriate types depending on 32/64-bit compilation and modified dynamic_images to use these new types. Tested 32-bit minidump-generation. Also did some code cleanup along the way. Removed all blank lines that had spaces.

git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@253 4c0a9323-5329-0410-9bdc-e9ce6186880e
This commit is contained in:
nealsid 2008-04-04 21:35:41 +00:00
parent fc816a3b3a
commit 867df1c652
5 changed files with 369 additions and 190 deletions

View file

@ -33,11 +33,13 @@ extern "C" { // needed to compile on Leopard
#include <stdio.h>
}
#include <dlfcn.h>
#include <mach/mach_vm.h>
#include <algorithm>
#include "client/mac/handler/dynamic_images.h"
namespace google_breakpad {
//==============================================================================
// Returns the size of the memory region containing |address| and the
// number of bytes from |address| to the end of the region.
@ -46,27 +48,30 @@ namespace google_breakpad {
// first in order to handle cases when we're reading strings and they
// straddle two vm regions.
//
static vm_size_t GetMemoryRegionSize(task_port_t target_task,
const void* address,
vm_size_t *size_to_end) {
vm_address_t region_base = (vm_address_t)address;
vm_size_t region_size;
static mach_vm_size_t GetMemoryRegionSize(task_port_t target_task,
const void* address,
mach_vm_size_t *size_to_end) {
mach_vm_address_t region_base = (mach_vm_address_t)address;
mach_vm_size_t region_size;
natural_t nesting_level = 0;
vm_region_submap_info submap_info;
mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT;
// Get information about the vm region containing |address|
kern_return_t result =
vm_region_recurse(target_task,
&region_base,
&region_size,
&nesting_level,
reinterpret_cast<vm_region_recurse_info_t>(&submap_info),
&info_count);
vm_region_recurse_info_t region_info;
region_info = reinterpret_cast<vm_region_recurse_info_t>(&submap_info);
kern_return_t result =
mach_vm_region_recurse(target_task,
&region_base,
&region_size,
&nesting_level,
region_info,
&info_count);
if (result == KERN_SUCCESS) {
// Get distance from |address| to the end of this region
*size_to_end = region_base + region_size -(vm_address_t)address;
*size_to_end = region_base + region_size -(mach_vm_address_t)address;
// If we want to handle strings as long as 4096 characters we may need
// to check if there's a vm region immediately following the first one.
@ -74,20 +79,19 @@ static vm_size_t GetMemoryRegionSize(task_port_t target_task,
// of the second region.
if (*size_to_end < 4096) {
// Second region starts where the first one ends
vm_address_t region_base2 =
(vm_address_t)(region_base + region_size);
vm_size_t region_size2;
mach_vm_address_t region_base2 =
(mach_vm_address_t)(region_base + region_size);
mach_vm_size_t region_size2;
// Get information about the following vm region
result =
vm_region_recurse(
target_task,
&region_base2,
&region_size2,
&nesting_level,
reinterpret_cast<vm_region_recurse_info_t>(&submap_info),
&info_count);
result =
mach_vm_region_recurse(target_task,
&region_base2,
&region_size2,
&nesting_level,
region_info,
&info_count);
// Extend region_size to go all the way to the end of the 2nd region
if (result == KERN_SUCCESS
&& region_base2 == region_base + region_size) {
@ -95,13 +99,13 @@ static vm_size_t GetMemoryRegionSize(task_port_t target_task,
}
}
*size_to_end = region_base + region_size -(vm_address_t)address;
*size_to_end = region_base + region_size -(mach_vm_address_t)address;
} else {
region_size = 0;
*size_to_end = 0;
}
return region_size;
return region_size;
}
#define kMaxStringLength 8192
@ -115,17 +119,17 @@ static void* ReadTaskString(task_port_t target_task,
// The problem is we don't know how much to read until we know how long
// the string is. And we don't know how long the string is, until we've read
// the memory! So, we'll try to read kMaxStringLength bytes
// (or as many bytes as we can until we reach the end of the vm region).
vm_size_t size_to_end;
// (or as many bytes as we can until we reach the end of the vm region).
mach_vm_size_t size_to_end;
GetMemoryRegionSize(target_task, address, &size_to_end);
if (size_to_end > 0) {
vm_size_t size_to_read =
mach_vm_size_t size_to_read =
size_to_end > kMaxStringLength ? kMaxStringLength : size_to_end;
return ReadTaskMemory(target_task, address, size_to_read);
}
return NULL;
}
@ -136,27 +140,36 @@ void* ReadTaskMemory(task_port_t target_task,
const void* address,
size_t length) {
void* result = NULL;
vm_address_t page_address = reinterpret_cast<vm_address_t>(address) & (-4096);
vm_address_t last_page_address =
(reinterpret_cast<vm_address_t>(address) + length + 4095) & (-4096);
vm_size_t page_size = last_page_address - page_address;
int systemPageSize = getpagesize();
// use the negative of the page size for the mask to find the page address
mach_vm_address_t page_address =
reinterpret_cast<mach_vm_address_t>(address) && (-systemPageSize);
mach_vm_address_t last_page_address =
(reinterpret_cast<mach_vm_address_t>(address) + length +
(systemPageSize - 1)) & (-systemPageSize);
mach_vm_size_t page_size = last_page_address - page_address;
uint8_t* local_start;
uint32_t local_length;
kern_return_t r = vm_read(target_task,
page_address,
page_size,
reinterpret_cast<vm_offset_t*>(&local_start),
&local_length);
kern_return_t r = mach_vm_read(target_task,
page_address,
page_size,
reinterpret_cast<vm_offset_t*>(&local_start),
&local_length);
if (r == KERN_SUCCESS) {
result = malloc(length);
if (result != NULL) {
memcpy(result, &local_start[(uint32_t)address - page_address], length);
memcpy(result,
&local_start[(mach_vm_address_t)address - page_address],
length);
}
vm_deallocate(mach_task_self(), (uintptr_t)local_start, local_length);
mach_vm_deallocate(mach_task_self(), (uintptr_t)local_start, local_length);
}
return result;
}
@ -165,21 +178,37 @@ void* ReadTaskMemory(task_port_t target_task,
//==============================================================================
// Initializes vmaddr_, vmsize_, and slide_
void DynamicImage::CalculateMemoryInfo() {
mach_header *header = GetMachHeader();
breakpad_mach_header *header = GetMachHeader();
// unless we can process the header, ensure that calls to
// IsValid() will return false
vmaddr_ = 0;
vmsize_ = 0;
slide_ = 0;
#if __LP64__
if(header->magic != MH_MAGIC_64) {
return;
}
#else
if(header->magic != MH_MAGIC) {
return;
}
#endif
const struct load_command *cmd =
reinterpret_cast<const struct load_command *>(header + 1);
for (unsigned int i = 0; cmd && (i < header->ncmds); ++i) {
if (cmd->cmd == LC_SEGMENT) {
const struct segment_command *seg =
reinterpret_cast<const struct segment_command *>(cmd);
const breakpad_mach_segment_command *seg =
reinterpret_cast<const breakpad_mach_segment_command *>(cmd);
if (!strcmp(seg->segname, "__TEXT")) {
vmaddr_ = seg->vmaddr;
vmsize_ = seg->vmsize;
slide_ = 0;
if (seg->fileoff == 0 && seg->filesize != 0) {
slide_ = (uintptr_t)GetLoadAddress() - (uintptr_t)seg->vmaddr;
}
@ -190,11 +219,7 @@ void DynamicImage::CalculateMemoryInfo() {
cmd = reinterpret_cast<const struct load_command *>
(reinterpret_cast<const char *>(cmd) + cmd->cmdsize);
}
// we failed - a call to IsValid() will return false
vmaddr_ = 0;
vmsize_ = 0;
slide_ = 0;
}
void DynamicImage::Print() {
@ -203,11 +228,11 @@ void DynamicImage::Print() {
path = "(unknown)";
}
printf("%p: %s\n", GetLoadAddress(), path);
mach_header *header = GetMachHeader();
breakpad_mach_header *header = GetMachHeader();
MachHeader(*header).Print();
printf("vmaddr\t\t: %p\n", reinterpret_cast<void*>(GetVMAddr()));
printf("vmsize\t\t: %d\n", GetVMSize());
printf("slide\t\t: %d\n", GetVMAddrSlide());
printf("vmsize\t\t: %llu\n", GetVMSize());
printf("slide\t\t: %td\n", GetVMAddrSlide());
}
#pragma mark -
@ -231,7 +256,7 @@ void DynamicImages::ReadImageInfoForTask() {
struct nlist &list = l[0];
list.n_un.n_name = const_cast<char *>("_dyld_all_image_infos");
nlist("/usr/lib/dyld", &list);
if (list.n_value) {
// Read the structure inside of dyld that contains information about
// loaded images. We're reading from the desired task's address space.
@ -261,19 +286,23 @@ void DynamicImages::ReadImageInfoForTask() {
dyld_image_info &info = infoArray[i];
// First read just the mach_header from the image in the task.
mach_header *header = reinterpret_cast<mach_header*>
(ReadTaskMemory(task_, info.load_address_, sizeof(mach_header)));
breakpad_mach_header *header = reinterpret_cast<breakpad_mach_header*>
(ReadTaskMemory(task_,
info.load_address_,
sizeof(breakpad_mach_header)));
if (!header)
break; // bail on this dynamic image
// Now determine the total amount we really want to read based on the
// size of the load commands. We need the header plus all of the
// size of the load commands. We need the header plus all of the
// load commands.
unsigned int header_size = sizeof(mach_header) + header->sizeofcmds;
unsigned int header_size =
sizeof(breakpad_mach_header) + header->sizeofcmds;
free(header);
header = reinterpret_cast<mach_header*>
header = reinterpret_cast<breakpad_mach_header*>
(ReadTaskMemory(task_, info.load_address_, header_size));
// Read the file name from the task's memory space.
@ -285,43 +314,44 @@ void DynamicImages::ReadImageInfoForTask() {
file_path = reinterpret_cast<char*>
(ReadTaskString(task_, info.file_path_));
}
// Create an object representing this image and add it to our list.
DynamicImage *new_image = new DynamicImage(header,
header_size,
info.load_address_,
file_path,
info.file_mod_date_,
task_);
DynamicImage *new_image;
new_image = new DynamicImage(header,
header_size,
(breakpad_mach_header*)info.load_address_,
file_path,
info.file_mod_date_,
task_);
if (new_image->IsValid()) {
image_list_.push_back(DynamicImageRef(new_image));
} else {
delete new_image;
}
if (file_path) {
free(file_path);
}
}
free(dyldInfo);
free(infoArray);
// sorts based on loading address
sort(image_list_.begin(), image_list_.end() );
}
}
}
}
//==============================================================================
DynamicImage *DynamicImages::GetExecutableImage() {
int executable_index = GetExecutableImageIndex();
if (executable_index >= 0) {
return GetImage(executable_index);
}
return NULL;
}

View file

@ -68,13 +68,23 @@ typedef struct dyld_all_image_infos {
bool processDetachedFromSharedRegion;
} dyld_all_image_infos;
// some typedefs to isolate 64/32 bit differences
#ifdef __LP64__
typedef mach_header_64 breakpad_mach_header;
typedef segment_command_64 breakpad_mach_segment_command;
#else
typedef mach_header breakpad_mach_header;
typedef segment_command breakpad_mach_segment_command;
#endif
//==============================================================================
// A simple wrapper for a mach_header
//
// This could be fleshed out with some more interesting methods.
class MachHeader {
public:
explicit MachHeader(const mach_header &header) : header_(header) {}
explicit MachHeader(const breakpad_mach_header &header) : header_(header) {}
void Print() {
printf("magic\t\t: %4x\n", header_.magic);
@ -86,16 +96,16 @@ class MachHeader {
printf("flags\t\t: %d\n", header_.flags);
}
mach_header header_;
breakpad_mach_header header_;
};
//==============================================================================
// Represents a single dynamically loaded mach-o image
class DynamicImage {
public:
DynamicImage(mach_header *header, // we take ownership
int header_size, // includes load commands
mach_header *load_address,
DynamicImage(breakpad_mach_header *header, // we take ownership
int header_size, // includes load commands
breakpad_mach_header *load_address,
char *inFilePath,
uintptr_t image_mod_date,
mach_port_t task)
@ -116,7 +126,7 @@ class DynamicImage {
}
// Returns pointer to a local copy of the mach_header plus load commands
mach_header *GetMachHeader() {return header_;}
breakpad_mach_header *GetMachHeader() {return header_;}
// Size of mach_header plus load commands
int GetHeaderSize() const {return header_size_;}
@ -127,16 +137,16 @@ class DynamicImage {
uintptr_t GetModDate() const {return file_mod_date_;}
// Actual address where the image was loaded
mach_header *GetLoadAddress() const {return load_address_;}
breakpad_mach_header *GetLoadAddress() const {return load_address_;}
// Address where the image should be loaded
uint32_t GetVMAddr() const {return vmaddr_;}
mach_vm_address_t GetVMAddr() const {return vmaddr_;}
// Difference between GetLoadAddress() and GetVMAddr()
ptrdiff_t GetVMAddrSlide() const {return slide_;}
// Size of the image
uint32_t GetVMSize() const {return vmsize_;}
mach_vm_size_t GetVMSize() const {return vmsize_;}
// Task owning this loaded image
mach_port_t GetTask() {return task_;}
@ -183,23 +193,25 @@ class DynamicImage {
InitializeFilePath(inInfo.GetFilePath());
// copy mach_header and load commands
header_ = reinterpret_cast<mach_header*>(malloc(inInfo.header_size_));
void *headerBuffer = malloc(inInfo.header_size_);
header_ = reinterpret_cast<breakpad_mach_header*>(headerBuffer);
memcpy(header_, inInfo.header_, inInfo.header_size_);
header_size_ = inInfo.header_size_;
}
#endif
mach_header *header_; // our local copy of the header
int header_size_; // mach_header plus load commands
mach_header *load_address_; // base address image is mapped into
uint32_t vmaddr_;
uint32_t vmsize_;
ptrdiff_t slide_;
breakpad_mach_header *header_; // our local copy of the header
int header_size_; // mach_header plus load commands
breakpad_mach_header *load_address_; // base address image is mapped into
mach_vm_address_t vmaddr_;
mach_vm_size_t vmsize_;
ptrdiff_t slide_;
char *file_path_; // path dyld used to load the image
uintptr_t file_mod_date_; // time_t of image file
char *file_path_; // path dyld used to load the image
uintptr_t file_mod_date_; // time_t of image file
mach_port_t task_;
mach_port_t task_;
};
//==============================================================================
@ -211,7 +223,8 @@ class DynamicImage {
class DynamicImageRef {
public:
explicit DynamicImageRef(DynamicImage *inP) : p(inP) {}
DynamicImageRef(const DynamicImageRef &inRef) : p(inRef.p) {} // STL required
// The copy constructor is required by STL
DynamicImageRef(const DynamicImageRef &inRef) : p(inRef.p) {}
bool operator<(const DynamicImageRef &inRef) const {
return (*const_cast<DynamicImageRef*>(this)->p)
@ -266,10 +279,14 @@ class DynamicImages {
}
void TestPrint() {
const breakpad_mach_header *header;
for (int i = 0; i < (int)image_list_.size(); ++i) {
printf("dyld: %p: name = %s\n", _dyld_get_image_header(i),
_dyld_get_image_name(i) );
const mach_header *header = _dyld_get_image_header(i);
_dyld_get_image_name(i) );
const void *imageHeader = _dyld_get_image_header(i);
header = reinterpret_cast<const breakpad_mach_header*>(imageHeader);
MachHeader(*header).Print();
}
}

View file

@ -30,6 +30,7 @@
#include <cstdio>
#include <mach/host_info.h>
#include <mach/mach_vm.h>
#include <mach/vm_statistics.h>
#include <mach-o/dyld.h>
#include <mach-o/loader.h>
@ -48,7 +49,7 @@ using MacStringUtils::IntegerValueAtIndex;
namespace google_breakpad {
// constructor when generating from within the crashed process
// constructor when generating from within the crashed process
MinidumpGenerator::MinidumpGenerator()
: exception_type_(0),
exception_code_(0),
@ -59,8 +60,10 @@ MinidumpGenerator::MinidumpGenerator()
GatherSystemInformation();
}
// constructor when generating from a different process than the crashed process
MinidumpGenerator::MinidumpGenerator(mach_port_t crashing_task, mach_port_t handler_thread)
// constructor when generating from a different process than the
// crashed process
MinidumpGenerator::MinidumpGenerator(mach_port_t crashing_task,
mach_port_t handler_thread)
: exception_type_(0),
exception_code_(0),
exception_thread_(0),
@ -71,7 +74,7 @@ MinidumpGenerator::MinidumpGenerator(mach_port_t crashing_task, mach_port_t hand
} else {
dynamic_images_ = NULL;
}
GatherSystemInformation();
}
@ -89,26 +92,29 @@ void MinidumpGenerator::GatherSystemInformation() {
// If this is non-zero, then we've already gathered the information
if (os_major_version_)
return;
// This code extracts the version and build information from the OS
CFStringRef vers_path =
CFSTR("/System/Library/CoreServices/SystemVersion.plist");
CFURLRef sys_vers =
CFURLCreateWithFileSystemPath(NULL, vers_path, kCFURLPOSIXPathStyle, false);
CFURLCreateWithFileSystemPath(NULL,
vers_path,
kCFURLPOSIXPathStyle,
false);
CFDataRef data;
SInt32 error;
CFURLCreateDataAndPropertiesFromResource(NULL, sys_vers, &data, NULL, NULL,
&error);
if (!data)
return;
CFDictionaryRef list = static_cast<CFDictionaryRef>
(CFPropertyListCreateFromXMLData(NULL, data, kCFPropertyListImmutable,
NULL));
if (!list)
return;
CFStringRef build_version = static_cast<CFStringRef>
(CFDictionaryGetValue(list, CFSTR("ProductBuildVersion")));
CFStringRef product_version = static_cast<CFStringRef>
@ -207,35 +213,45 @@ bool MinidumpGenerator::Write(const char *path) {
return result;
}
size_t MinidumpGenerator::CalculateStackSize(vm_address_t start_addr) {
vm_address_t stack_region_base = start_addr;
vm_size_t stack_region_size;
size_t MinidumpGenerator::CalculateStackSize(mach_vm_address_t start_addr) {
mach_vm_address_t stack_region_base = start_addr;
mach_vm_size_t stack_region_size;
natural_t nesting_level = 0;
vm_region_submap_info submap_info;
mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT;
kern_return_t result =
vm_region_recurse(crashing_task_, &stack_region_base, &stack_region_size,
&nesting_level,
reinterpret_cast<vm_region_recurse_info_t>(&submap_info),
&info_count);
if ((stack_region_base + stack_region_size) == 0xbffff000) {
// The stack for thread 0 needs to extend all the way to 0xc0000000
// For many processes the stack is first created in one page
// from 0xbffff000 - 0xc0000000 and is then later extended to
// a much larger size by creating a new VM region immediately below
// the initial page
vm_region_recurse_info_t region_info;
region_info = reinterpret_cast<vm_region_recurse_info_t>(&submap_info);
// include the original stack frame page (0xbffff000 - 0xc0000000)
stack_region_size += 0x1000;
kern_return_t result =
mach_vm_region_recurse(crashing_task_, &stack_region_base,
&stack_region_size, &nesting_level,
region_info,
&info_count);
if ((stack_region_base + stack_region_size) == TOP_OF_THREAD0_STACK) {
// The stack for thread 0 needs to extend all the way to
// 0xc0000000 on 32 bit and 00007fff5fc00000 on 64bit. HOWEVER,
// for many processes, the stack is first created in one page
// below this, and is then later extended to a much larger size by
// creating a new VM region immediately below the initial page.
// You can see this for yourself by running vmmap on a "hello,
// world" program
// Because of the above, we'll add 4k to include the original
// stack frame page.
// This method of finding the stack region needs to be done in
// a better way; the breakpad issue 247 is tracking this.
stack_region_size += 0x1000;
}
return result == KERN_SUCCESS ?
return result == KERN_SUCCESS ?
stack_region_base + stack_region_size - start_addr : 0;
}
bool MinidumpGenerator::WriteStackFromStartAddress(
vm_address_t start_addr,
mach_vm_address_t start_addr,
MDMemoryDescriptor *stack_location) {
UntypedMDRVA memory(&writer_);
size_t size = CalculateStackSize(start_addr);
@ -250,55 +266,73 @@ bool MinidumpGenerator::WriteStackFromStartAddress(
bool result;
if (dynamic_images_) {
void *stack_memory = ReadTaskMemory(crashing_task_, (void*)start_addr, size);
void *stack_memory = ReadTaskMemory(crashing_task_,
(void*)start_addr,
size);
result = memory.Copy(stack_memory, size);
free(stack_memory);
} else {
result = memory.Copy(reinterpret_cast<const void *>(start_addr), size);
}
stack_location->start_of_memory_range = start_addr;
stack_location->memory = memory.location();
return result;
}
#if TARGET_CPU_PPC
#if TARGET_CPU_PPC || TARGET_CPU_PPC64
bool MinidumpGenerator::WriteStack(breakpad_thread_state_data_t state,
MDMemoryDescriptor *stack_location) {
ppc_thread_state_t *machine_state =
reinterpret_cast<ppc_thread_state_t *>(state);
vm_address_t start_addr = machine_state->r1;
breakpad_thread_state_t *machine_state =
reinterpret_cast<breakpad_thread_state_t *>(state);
#if TARGET_CPU_PPC
mach_vm_address_t start_addr = machine_state->r1;
#else
mach_vm_address_t start_addr = machine_state->__r1;
#endif
return WriteStackFromStartAddress(start_addr, stack_location);
}
u_int64_t MinidumpGenerator::CurrentPCForStack(breakpad_thread_state_data_t state) {
ppc_thread_state_t *machine_state =
reinterpret_cast<ppc_thread_state_t *>(state);
u_int64_t
MinidumpGenerator::CurrentPCForStack(breakpad_thread_state_data_t state) {
breakpad_thread_state_t *machine_state =
reinterpret_cast<breakpad_thread_state_t *>(state);
#if TARGET_CPU_PPC
return machine_state->srr0;
#else
return machine_state->__srr0;
#endif
}
bool MinidumpGenerator::WriteContext(breakpad_thread_state_data_t state,
MDLocationDescriptor *register_location) {
TypedMDRVA<MDRawContextPPC> context(&writer_);
ppc_thread_state_t *machine_state =
reinterpret_cast<ppc_thread_state_t *>(state);
TypedMDRVA<MinidumpContext> context(&writer_);
breakpad_thread_state_t *machine_state =
reinterpret_cast<breakpad_thread_state_t *>(state);
if (!context.Allocate())
return false;
*register_location = context.location();
MDRawContextPPC *context_ptr = context.get();
MinidumpContext *context_ptr = context.get();
context_ptr->context_flags = MD_CONTEXT_PPC_BASE;
#if TARGET_CPU_PPC64
#define AddReg(a) context_ptr->a = machine_state->__ ## a
#define AddGPR(a) context_ptr->gpr[a] = machine_state->__r ## a
#else
#define AddReg(a) context_ptr->a = machine_state->a
#define AddGPR(a) context_ptr->gpr[a] = machine_state->r ## a
#endif
AddReg(srr0);
AddReg(cr);
AddReg(xer);
AddReg(ctr);
AddReg(mq);
AddReg(lr);
AddReg(vrsave);
@ -334,38 +368,68 @@ bool MinidumpGenerator::WriteContext(breakpad_thread_state_data_t state,
AddGPR(29);
AddGPR(30);
AddGPR(31);
#if TARGET_CPU_PPC
/* The mq register is only for PPC */
AddReg(mq);
#endif
return true;
}
#elif TARGET_CPU_X86
#elif TARGET_CPU_X86 || TARGET_CPU_X86_64
bool MinidumpGenerator::WriteStack(breakpad_thread_state_data_t state,
MDMemoryDescriptor *stack_location) {
i386_thread_state_t *machine_state =
reinterpret_cast<i386_thread_state_t *>(state);
vm_address_t start_addr = machine_state->esp;
breakpad_thread_state_t *machine_state =
reinterpret_cast<breakpad_thread_state_t *>(state);
#if TARGET_CPU_X86_64
mach_vm_address_t start_addr = machine_state->__rsp;
#else
mach_vm_address_t start_addr = machine_state->esp;
#endif
return WriteStackFromStartAddress(start_addr, stack_location);
}
u_int64_t MinidumpGenerator::CurrentPCForStack(breakpad_thread_state_data_t state) {
i386_thread_state_t *machine_state =
reinterpret_cast<i386_thread_state_t *>(state);
u_int64_t
MinidumpGenerator::CurrentPCForStack(breakpad_thread_state_data_t state) {
breakpad_thread_state_t *machine_state =
reinterpret_cast<breakpad_thread_state_t *>(state);
#if TARGET_CPU_X86_64
return machine_state->__rip;
#else
return machine_state->eip;
#endif
}
bool MinidumpGenerator::WriteContext(breakpad_thread_state_data_t state,
MDLocationDescriptor *register_location) {
TypedMDRVA<MDRawContextX86> context(&writer_);
i386_thread_state_t *machine_state =
reinterpret_cast<i386_thread_state_t *>(state);
TypedMDRVA<MinidumpContext> context(&writer_);
breakpad_thread_state_t *machine_state =
reinterpret_cast<breakpad_thread_state_t *>(state);
if (!context.Allocate())
return false;
*register_location = context.location();
MDRawContextX86 *context_ptr = context.get();
MinidumpContext *context_ptr = context.get();
#if TARGET_CPU_X86
context_ptr->context_flags = MD_CONTEXT_X86;
#define AddReg(a) context_ptr->a = machine_state->a
AddReg(eax);
AddReg(ebx);
AddReg(ecx);
AddReg(edx);
AddReg(esi);
AddReg(edi);
AddReg(ebp);
AddReg(esp);
AddReg(cs);
AddReg(ds);
AddReg(ss);
@ -375,16 +439,40 @@ bool MinidumpGenerator::WriteContext(breakpad_thread_state_data_t state,
AddReg(eflags);
AddReg(eip);
AddReg(eax);
AddReg(ebx);
AddReg(ecx);
AddReg(edx);
AddReg(esi);
AddReg(edi);
AddReg(ebp);
AddReg(esp);
#else
#define AddReg(a) context_ptr->a = machine_state->__ ## a
context_ptr->context_flags = MD_CONTEXT_AMD64;
AddReg(rax);
AddReg(rbx);
AddReg(rcx);
AddReg(rdx);
AddReg(rdi);
AddReg(rsi);
AddReg(rbp);
AddReg(rsp);
AddReg(r8);
AddReg(r9);
AddReg(r10);
AddReg(r11);
AddReg(r12);
AddReg(r13);
AddReg(r14);
AddReg(r15);
AddReg(rip);
// according to AMD's software developer guide, bits above 18 are
// not used in the flags register. Since the minidump format
// specifies 32 bits for the flags register, we can truncate safely
// with no loss.
context_ptr->eflags = machine_state->__rflags;
AddReg(cs);
AddReg(fs);
AddReg(gs);
#endif
return true;
}
#endif
bool MinidumpGenerator::WriteThreadStream(mach_port_t thread_id,
@ -447,7 +535,8 @@ bool MinidumpGenerator::WriteThreadListStream(
return true;
}
bool MinidumpGenerator::WriteExceptionStream(MDRawDirectory *exception_stream) {
bool
MinidumpGenerator::WriteExceptionStream(MDRawDirectory *exception_stream) {
TypedMDRVA<MDRawExceptionStream> exception(&writer_);
if (!exception.Allocate())
@ -466,7 +555,9 @@ bool MinidumpGenerator::WriteExceptionStream(MDRawDirectory *exception_stream) {
breakpad_thread_state_data_t state;
mach_msg_type_number_t stateCount = sizeof(state);
if (thread_get_state(exception_thread_, BREAKPAD_MACHINE_THREAD_STATE, state,
if (thread_get_state(exception_thread_,
BREAKPAD_MACHINE_THREAD_STATE,
state,
&stateCount) != KERN_SUCCESS)
return false;
@ -508,13 +599,13 @@ bool MinidumpGenerator::WriteSystemInfoStream(
// to preserve it.
#define cpuid(op,eax,ebx,ecx,edx) \
asm ("pushl %%ebx \n\t" \
"cpuid \n\t" \
"movl %%ebx,%1 \n\t" \
"popl %%ebx" \
: "=a" (eax), \
"=g" (ebx), \
"=c" (ecx), \
"=d" (edx) \
"cpuid \n\t" \
"movl %%ebx,%1 \n\t" \
"popl %%ebx" \
: "=a" (eax), \
"=g" (ebx), \
"=c" (ecx), \
"=d" (edx) \
: "0" (op))
int unused, unused2;
// get vendor id
@ -564,7 +655,7 @@ bool MinidumpGenerator::WriteModuleStream(unsigned int index,
if (!image)
return false;
const mach_header *header = image->GetMachHeader();
const breakpad_mach_header *header = image->GetMachHeader();
if (!header)
return false;
@ -588,11 +679,24 @@ bool MinidumpGenerator::WriteModuleStream(unsigned int index,
}
} else {
// we're getting module info in the crashed process
const struct mach_header *header = _dyld_get_image_header(index);
const breakpad_mach_header *header;
header = (breakpad_mach_header*)_dyld_get_image_header(index);
if (!header)
return false;
#ifdef __LP64__
assert(header->magic == MH_MAGIC_64);
if(header->magic != MH_MAGIC_64)
return false;
#else
assert(header->magic == MH_MAGIC);
if(header->magic != MH_MAGIC)
return false;
#endif
int cpu_type = header->cputype;
unsigned long slide = _dyld_get_image_vmaddr_slide(index);
const char* name = _dyld_get_image_name(index);
@ -603,8 +707,10 @@ bool MinidumpGenerator::WriteModuleStream(unsigned int index,
for (unsigned int i = 0; cmd && (i < header->ncmds); i++) {
if (cmd->cmd == LC_SEGMENT) {
const struct segment_command *seg =
reinterpret_cast<const struct segment_command *>(cmd);
const breakpad_mach_segment_command *seg =
reinterpret_cast<const breakpad_mach_segment_command *>(cmd);
if (!strcmp(seg->segname, "__TEXT")) {
MDLocationDescriptor string_location;
@ -622,10 +728,10 @@ bool MinidumpGenerator::WriteModuleStream(unsigned int index,
}
}
cmd = reinterpret_cast<struct load_command *>((char *)cmd + cmd->cmdsize);
cmd = reinterpret_cast<struct load_command*>((char *)cmd + cmd->cmdsize);
}
}
return true;
}
@ -647,7 +753,7 @@ int MinidumpGenerator::FindExecutableModule() {
return index;
}
}
// failed - just use the first image
return 0;
}
@ -681,9 +787,9 @@ bool MinidumpGenerator::WriteCVRecord(MDRawModule *module, int cpu_type,
// Get the module identifier
FileID file_id(module_path);
unsigned char identifier[16];
if (file_id.MachoIdentifier(cpu_type, identifier)) {
cv_ptr->signature.data1 = (uint32_t)identifier[0] << 24 |
cv_ptr->signature.data1 = (uint32_t)identifier[0] << 24 |
(uint32_t)identifier[1] << 16 | (uint32_t)identifier[2] << 8 |
(uint32_t)identifier[3];
cv_ptr->signature.data2 = (uint32_t)identifier[4] << 8 | identifier[5];
@ -705,9 +811,6 @@ bool MinidumpGenerator::WriteModuleListStream(
MDRawDirectory *module_list_stream) {
TypedMDRVA<MDRawModuleList> list(&writer_);
if (!_dyld_present())
return false;
int image_count = dynamic_images_ ?
dynamic_images_->GetImageCount() : _dyld_image_count();
@ -770,12 +873,15 @@ bool MinidumpGenerator::WriteMiscInfoStream(MDRawDirectory *misc_info_stream) {
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, info_ptr->process_id };
size_t size;
if (!sysctl(mib, sizeof(mib) / sizeof(mib[0]), NULL, &size, NULL, 0)) {
vm_address_t addr;
if (vm_allocate(mach_task_self(), &addr, size, true) == KERN_SUCCESS) {
mach_vm_address_t addr;
if (mach_vm_allocate(mach_task_self(),
&addr,
size,
true) == KERN_SUCCESS) {
struct kinfo_proc *proc = (struct kinfo_proc *)addr;
if (!sysctl(mib, sizeof(mib) / sizeof(mib[0]), proc, &size, NULL, 0))
info_ptr->process_create_time = proc->kp_proc.p_starttime.tv_sec;
vm_deallocate(mach_task_self(), addr, size);
mach_vm_deallocate(mach_task_self(), addr, size);
}
}

View file

@ -46,6 +46,26 @@ namespace google_breakpad {
using std::string;
#if TARGET_CPU_X86_64 || TARGET_CPU_PPC64
#define TOP_OF_THREAD0_STACK 0x00007fff5fbff000
#else
#define TOP_OF_THREAD0_STACK 0xbffff000
#endif
#if TARGET_CPU_X86_64
typedef x86_thread_state64_t breakpad_thread_state_t;
typedef MDRawContextAMD64 MinidumpContext;
#elif TARGET_CPU_X86
typedef i386_thread_state_t breakpad_thread_state_t;
typedef MDRawContextX86 MinidumpContext;
#elif TARGET_CPU_PPC64
typedef ppc_thread_state64_t breakpad_thread_state_t;
typedef MDRawContextPPC64 MinidumpContext;
#elif TARGET_CPU_PPC
typedef ppc_thread_state_t breakpad_thread_state_t;
typedef MDRawContextPPC MinidumpContext;
#endif
// Creates a minidump file of the current process. If there is exception data,
// use SetExceptionInformation() to add this to the minidump. The minidump
// file is generated by the Write() function.
@ -93,7 +113,7 @@ class MinidumpGenerator {
// Helpers
u_int64_t CurrentPCForStack(breakpad_thread_state_data_t state);
bool WriteStackFromStartAddress(vm_address_t start_addr,
bool WriteStackFromStartAddress(mach_vm_address_t start_addr,
MDMemoryDescriptor *stack_location);
bool WriteStack(breakpad_thread_state_data_t state,
MDMemoryDescriptor *stack_location);
@ -103,7 +123,9 @@ class MinidumpGenerator {
bool WriteCVRecord(MDRawModule *module, int cpu_type,
const char *module_path);
bool WriteModuleStream(unsigned int index, MDRawModule *module);
size_t CalculateStackSize(vm_address_t start_addr);
size_t CalculateStackSize(mach_vm_address_t start_addr);
int FindExecutableModule();
// disallow copy ctor and operator=

View file

@ -48,9 +48,13 @@ static void *Reporter(void *) {
struct passwd *user = getpwuid(getuid());
// Write it to the desktop
snprintf(buffer, sizeof(buffer), "/Users/%s/Desktop/test.dmp", user->pw_name);
snprintf(buffer,
sizeof(buffer),
"/Users/%s/Desktop/test.dmp",
user->pw_name);
fprintf(stdout, "Writing %s\n", buffer);
unlink(buffer);
md.Write(buffer);
doneWritingReport = true;