suyu/src/video_core/buffer_cache/buffer_cache.h

2022 lines
75 KiB
C++

// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <numeric>
#include <span>
#include <vector>
#include <boost/container/small_vector.hpp>
#include <boost/icl/interval_set.hpp>
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "common/literals.h"
#include "common/lru_cache.h"
#include "common/microprofile.h"
#include "common/polyfill_ranges.h"
#include "common/scratch_buffer.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/buffer_cache/buffer_base.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/delayed_destruction_ring.h"
#include "video_core/dirty_flags.h"
#include "video_core/engines/draw_manager.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/slot_vector.h"
#include "video_core/texture_cache/types.h"
namespace VideoCommon {
MICROPROFILE_DECLARE(GPU_PrepareBuffers);
MICROPROFILE_DECLARE(GPU_BindUploadBuffers);
MICROPROFILE_DECLARE(GPU_DownloadMemory);
using BufferId = SlotId;
using VideoCore::Surface::PixelFormat;
using namespace Common::Literals;
constexpr u32 NUM_VERTEX_BUFFERS = 32;
constexpr u32 NUM_TRANSFORM_FEEDBACK_BUFFERS = 4;
constexpr u32 NUM_GRAPHICS_UNIFORM_BUFFERS = 18;
constexpr u32 NUM_COMPUTE_UNIFORM_BUFFERS = 8;
constexpr u32 NUM_STORAGE_BUFFERS = 16;
constexpr u32 NUM_TEXTURE_BUFFERS = 16;
constexpr u32 NUM_STAGES = 5;
using UniformBufferSizes = std::array<std::array<u32, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES>;
using ComputeUniformBufferSizes = std::array<u32, NUM_COMPUTE_UNIFORM_BUFFERS>;
template <typename P>
class BufferCache : public VideoCommon::ChannelSetupCaches<VideoCommon::ChannelInfo> {
// Page size for caching purposes.
// This is unrelated to the CPU page size and it can be changed as it seems optimal.
static constexpr u32 YUZU_PAGEBITS = 16;
static constexpr u64 YUZU_PAGESIZE = u64{1} << YUZU_PAGEBITS;
static constexpr bool IS_OPENGL = P::IS_OPENGL;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS =
P::HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS;
static constexpr bool HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT =
P::HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT;
static constexpr bool NEEDS_BIND_UNIFORM_INDEX = P::NEEDS_BIND_UNIFORM_INDEX;
static constexpr bool NEEDS_BIND_STORAGE_INDEX = P::NEEDS_BIND_STORAGE_INDEX;
static constexpr bool USE_MEMORY_MAPS = P::USE_MEMORY_MAPS;
static constexpr bool SEPARATE_IMAGE_BUFFERS_BINDINGS = P::SEPARATE_IMAGE_BUFFER_BINDINGS;
static constexpr BufferId NULL_BUFFER_ID{0};
static constexpr s64 DEFAULT_EXPECTED_MEMORY = 512_MiB;
static constexpr s64 DEFAULT_CRITICAL_MEMORY = 1_GiB;
static constexpr s64 TARGET_THRESHOLD = 4_GiB;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using Runtime = typename P::Runtime;
using Buffer = typename P::Buffer;
using IntervalSet = boost::icl::interval_set<VAddr>;
using IntervalType = typename IntervalSet::interval_type;
struct Empty {};
struct OverlapResult {
std::vector<BufferId> ids;
VAddr begin;
VAddr end;
bool has_stream_leap = false;
};
struct Binding {
VAddr cpu_addr{};
u32 size{};
BufferId buffer_id;
};
struct TextureBufferBinding : Binding {
PixelFormat format;
};
static constexpr Binding NULL_BINDING{
.cpu_addr = 0,
.size = 0,
.buffer_id = NULL_BUFFER_ID,
};
public:
static constexpr u32 DEFAULT_SKIP_CACHE_SIZE = static_cast<u32>(4_KiB);
explicit BufferCache(VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, Runtime& runtime_);
void TickFrame();
void WriteMemory(VAddr cpu_addr, u64 size);
void CachedWriteMemory(VAddr cpu_addr, u64 size);
void DownloadMemory(VAddr cpu_addr, u64 size);
bool InlineMemory(VAddr dest_address, size_t copy_size, std::span<const u8> inlined_buffer);
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size);
void DisableGraphicsUniformBuffer(size_t stage, u32 index);
void UpdateGraphicsBuffers(bool is_indexed);
void UpdateComputeBuffers();
void BindHostGeometryBuffers(bool is_indexed);
void BindHostStageBuffers(size_t stage);
void BindHostComputeBuffers();
void SetUniformBuffersState(const std::array<u32, NUM_STAGES>& mask,
const UniformBufferSizes* sizes);
void SetComputeUniformBufferState(u32 mask, const ComputeUniformBufferSizes* sizes);
void UnbindGraphicsStorageBuffers(size_t stage);
void BindGraphicsStorageBuffer(size_t stage, size_t ssbo_index, u32 cbuf_index, u32 cbuf_offset,
bool is_written);
void UnbindGraphicsTextureBuffers(size_t stage);
void BindGraphicsTextureBuffer(size_t stage, size_t tbo_index, GPUVAddr gpu_addr, u32 size,
PixelFormat format, bool is_written, bool is_image);
void UnbindComputeStorageBuffers();
void BindComputeStorageBuffer(size_t ssbo_index, u32 cbuf_index, u32 cbuf_offset,
bool is_written);
void UnbindComputeTextureBuffers();
void BindComputeTextureBuffer(size_t tbo_index, GPUVAddr gpu_addr, u32 size, PixelFormat format,
bool is_written, bool is_image);
void FlushCachedWrites();
/// Return true when there are uncommitted buffers to be downloaded
[[nodiscard]] bool HasUncommittedFlushes() const noexcept;
void AccumulateFlushes();
/// Return true when the caller should wait for async downloads
[[nodiscard]] bool ShouldWaitAsyncFlushes() const noexcept;
/// Commit asynchronous downloads
void CommitAsyncFlushes();
void CommitAsyncFlushesHigh();
/// Pop asynchronous downloads
void PopAsyncFlushes();
bool DMACopy(GPUVAddr src_address, GPUVAddr dest_address, u64 amount);
bool DMAClear(GPUVAddr src_address, u64 amount, u32 value);
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
/// Return true when a region is registered on the cache
[[nodiscard]] bool IsRegionRegistered(VAddr addr, size_t size);
/// Return true when a CPU region is modified from the CPU
[[nodiscard]] bool IsRegionCpuModified(VAddr addr, size_t size);
void SetDrawIndirect(
const Tegra::Engines::DrawManager::IndirectParams* current_draw_indirect_) {
current_draw_indirect = current_draw_indirect_;
}
[[nodiscard]] std::pair<Buffer*, u32> GetDrawIndirectCount();
[[nodiscard]] std::pair<Buffer*, u32> GetDrawIndirectBuffer();
std::recursive_mutex mutex;
Runtime& runtime;
private:
template <typename Func>
static void ForEachEnabledBit(u32 enabled_mask, Func&& func) {
for (u32 index = 0; enabled_mask != 0; ++index, enabled_mask >>= 1) {
const int disabled_bits = std::countr_zero(enabled_mask);
index += disabled_bits;
enabled_mask >>= disabled_bits;
func(index);
}
}
template <typename Func>
void ForEachBufferInRange(VAddr cpu_addr, u64 size, Func&& func) {
const u64 page_end = Common::DivCeil(cpu_addr + size, YUZU_PAGESIZE);
for (u64 page = cpu_addr >> YUZU_PAGEBITS; page < page_end;) {
const BufferId buffer_id = page_table[page];
if (!buffer_id) {
++page;
continue;
}
Buffer& buffer = slot_buffers[buffer_id];
func(buffer_id, buffer);
const VAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
page = Common::DivCeil(end_addr, YUZU_PAGESIZE);
}
}
template <typename Func>
void ForEachWrittenRange(VAddr cpu_addr, u64 size, Func&& func) {
const VAddr start_address = cpu_addr;
const VAddr end_address = start_address + size;
const VAddr search_base =
static_cast<VAddr>(std::min<s64>(0LL, static_cast<s64>(start_address - size)));
const IntervalType search_interval{search_base, search_base + 1};
auto it = common_ranges.lower_bound(search_interval);
if (it == common_ranges.end()) {
it = common_ranges.begin();
}
for (; it != common_ranges.end(); it++) {
VAddr inter_addr_end = it->upper();
VAddr inter_addr = it->lower();
if (inter_addr >= end_address) {
break;
}
if (inter_addr_end <= start_address) {
continue;
}
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end);
}
}
static bool IsRangeGranular(VAddr cpu_addr, size_t size) {
return (cpu_addr & ~Core::Memory::YUZU_PAGEMASK) ==
((cpu_addr + size) & ~Core::Memory::YUZU_PAGEMASK);
}
void RunGarbageCollector();
void BindHostIndexBuffer();
void BindHostVertexBuffers();
void BindHostDrawIndirectBuffers();
void BindHostGraphicsUniformBuffers(size_t stage);
void BindHostGraphicsUniformBuffer(size_t stage, u32 index, u32 binding_index, bool needs_bind);
void BindHostGraphicsStorageBuffers(size_t stage);
void BindHostGraphicsTextureBuffers(size_t stage);
void BindHostTransformFeedbackBuffers();
void BindHostComputeUniformBuffers();
void BindHostComputeStorageBuffers();
void BindHostComputeTextureBuffers();
void DoUpdateGraphicsBuffers(bool is_indexed);
void DoUpdateComputeBuffers();
void UpdateIndexBuffer();
void UpdateVertexBuffers();
void UpdateVertexBuffer(u32 index);
void UpdateDrawIndirect();
void UpdateUniformBuffers(size_t stage);
void UpdateStorageBuffers(size_t stage);
void UpdateTextureBuffers(size_t stage);
void UpdateTransformFeedbackBuffers();
void UpdateTransformFeedbackBuffer(u32 index);
void UpdateComputeUniformBuffers();
void UpdateComputeStorageBuffers();
void UpdateComputeTextureBuffers();
void MarkWrittenBuffer(BufferId buffer_id, VAddr cpu_addr, u32 size);
[[nodiscard]] BufferId FindBuffer(VAddr cpu_addr, u32 size);
[[nodiscard]] OverlapResult ResolveOverlaps(VAddr cpu_addr, u32 wanted_size);
void JoinOverlap(BufferId new_buffer_id, BufferId overlap_id, bool accumulate_stream_score);
[[nodiscard]] BufferId CreateBuffer(VAddr cpu_addr, u32 wanted_size);
void Register(BufferId buffer_id);
void Unregister(BufferId buffer_id);
template <bool insert>
void ChangeRegister(BufferId buffer_id);
void TouchBuffer(Buffer& buffer, BufferId buffer_id) noexcept;
bool SynchronizeBuffer(Buffer& buffer, VAddr cpu_addr, u32 size);
bool SynchronizeBufferImpl(Buffer& buffer, VAddr cpu_addr, u32 size);
void UploadMemory(Buffer& buffer, u64 total_size_bytes, u64 largest_copy,
std::span<BufferCopy> copies);
void ImmediateUploadMemory(Buffer& buffer, u64 largest_copy,
std::span<const BufferCopy> copies);
void MappedUploadMemory(Buffer& buffer, u64 total_size_bytes, std::span<BufferCopy> copies);
void DownloadBufferMemory(Buffer& buffer_id);
void DownloadBufferMemory(Buffer& buffer_id, VAddr cpu_addr, u64 size);
void DeleteBuffer(BufferId buffer_id);
void NotifyBufferDeletion();
[[nodiscard]] Binding StorageBufferBinding(GPUVAddr ssbo_addr, bool is_written = false) const;
[[nodiscard]] TextureBufferBinding GetTextureBufferBinding(GPUVAddr gpu_addr, u32 size,
PixelFormat format);
[[nodiscard]] std::span<const u8> ImmediateBufferWithData(VAddr cpu_addr, size_t size);
[[nodiscard]] std::span<u8> ImmediateBuffer(size_t wanted_capacity);
[[nodiscard]] bool HasFastUniformBufferBound(size_t stage, u32 binding_index) const noexcept;
void ClearDownload(IntervalType subtract_interval);
VideoCore::RasterizerInterface& rasterizer;
Core::Memory::Memory& cpu_memory;
SlotVector<Buffer> slot_buffers;
DelayedDestructionRing<Buffer, 8> delayed_destruction_ring;
const Tegra::Engines::DrawManager::IndirectParams* current_draw_indirect{};
u32 last_index_count = 0;
Binding index_buffer;
std::array<Binding, NUM_VERTEX_BUFFERS> vertex_buffers;
std::array<std::array<Binding, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES> uniform_buffers;
std::array<std::array<Binding, NUM_STORAGE_BUFFERS>, NUM_STAGES> storage_buffers;
std::array<std::array<TextureBufferBinding, NUM_TEXTURE_BUFFERS>, NUM_STAGES> texture_buffers;
std::array<Binding, NUM_TRANSFORM_FEEDBACK_BUFFERS> transform_feedback_buffers;
Binding count_buffer_binding;
Binding indirect_buffer_binding;
std::array<Binding, NUM_COMPUTE_UNIFORM_BUFFERS> compute_uniform_buffers;
std::array<Binding, NUM_STORAGE_BUFFERS> compute_storage_buffers;
std::array<TextureBufferBinding, NUM_TEXTURE_BUFFERS> compute_texture_buffers;
std::array<u32, NUM_STAGES> enabled_uniform_buffer_masks{};
u32 enabled_compute_uniform_buffer_mask = 0;
const UniformBufferSizes* uniform_buffer_sizes{};
const ComputeUniformBufferSizes* compute_uniform_buffer_sizes{};
std::array<u32, NUM_STAGES> enabled_storage_buffers{};
std::array<u32, NUM_STAGES> written_storage_buffers{};
u32 enabled_compute_storage_buffers = 0;
u32 written_compute_storage_buffers = 0;
std::array<u32, NUM_STAGES> enabled_texture_buffers{};
std::array<u32, NUM_STAGES> written_texture_buffers{};
std::array<u32, NUM_STAGES> image_texture_buffers{};
u32 enabled_compute_texture_buffers = 0;
u32 written_compute_texture_buffers = 0;
u32 image_compute_texture_buffers = 0;
std::array<u32, 16> uniform_cache_hits{};
std::array<u32, 16> uniform_cache_shots{};
u32 uniform_buffer_skip_cache_size = DEFAULT_SKIP_CACHE_SIZE;
bool has_deleted_buffers = false;
std::conditional_t<HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS, std::array<u32, NUM_STAGES>, Empty>
dirty_uniform_buffers{};
std::conditional_t<IS_OPENGL, std::array<u32, NUM_STAGES>, Empty> fast_bound_uniform_buffers{};
std::conditional_t<HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS,
std::array<std::array<u32, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES>, Empty>
uniform_buffer_binding_sizes{};
std::vector<BufferId> cached_write_buffer_ids;
IntervalSet uncommitted_ranges;
IntervalSet common_ranges;
std::deque<IntervalSet> committed_ranges;
Common::ScratchBuffer<u8> immediate_buffer_alloc;
struct LRUItemParams {
using ObjectType = BufferId;
using TickType = u64;
};
Common::LeastRecentlyUsedCache<LRUItemParams> lru_cache;
u64 frame_tick = 0;
u64 total_used_memory = 0;
u64 minimum_memory = 0;
u64 critical_memory = 0;
std::array<BufferId, ((1ULL << 39) >> YUZU_PAGEBITS)> page_table;
};
template <class P>
BufferCache<P>::BufferCache(VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, Runtime& runtime_)
: runtime{runtime_}, rasterizer{rasterizer_}, cpu_memory{cpu_memory_} {
// Ensure the first slot is used for the null buffer
void(slot_buffers.insert(runtime, NullBufferParams{}));
common_ranges.clear();
if (!runtime.CanReportMemoryUsage()) {
minimum_memory = DEFAULT_EXPECTED_MEMORY;
critical_memory = DEFAULT_CRITICAL_MEMORY;
return;
}
const s64 device_memory = static_cast<s64>(runtime.GetDeviceLocalMemory());
const s64 min_spacing_expected = device_memory - 1_GiB - 512_MiB;
const s64 min_spacing_critical = device_memory - 1_GiB;
const s64 mem_threshold = std::min(device_memory, TARGET_THRESHOLD);
const s64 min_vacancy_expected = (6 * mem_threshold) / 10;
const s64 min_vacancy_critical = (3 * mem_threshold) / 10;
minimum_memory = static_cast<u64>(
std::max(std::min(device_memory - min_vacancy_expected, min_spacing_expected),
DEFAULT_EXPECTED_MEMORY));
critical_memory = static_cast<u64>(
std::max(std::min(device_memory - min_vacancy_critical, min_spacing_critical),
DEFAULT_CRITICAL_MEMORY));
}
template <class P>
void BufferCache<P>::RunGarbageCollector() {
const bool aggressive_gc = total_used_memory >= critical_memory;
const u64 ticks_to_destroy = aggressive_gc ? 60 : 120;
int num_iterations = aggressive_gc ? 64 : 32;
const auto clean_up = [this, &num_iterations](BufferId buffer_id) {
if (num_iterations == 0) {
return true;
}
--num_iterations;
auto& buffer = slot_buffers[buffer_id];
DownloadBufferMemory(buffer);
DeleteBuffer(buffer_id);
return false;
};
lru_cache.ForEachItemBelow(frame_tick - ticks_to_destroy, clean_up);
}
template <class P>
void BufferCache<P>::TickFrame() {
// Calculate hits and shots and move hit bits to the right
const u32 hits = std::reduce(uniform_cache_hits.begin(), uniform_cache_hits.end());
const u32 shots = std::reduce(uniform_cache_shots.begin(), uniform_cache_shots.end());
std::copy_n(uniform_cache_hits.begin(), uniform_cache_hits.size() - 1,
uniform_cache_hits.begin() + 1);
std::copy_n(uniform_cache_shots.begin(), uniform_cache_shots.size() - 1,
uniform_cache_shots.begin() + 1);
uniform_cache_hits[0] = 0;
uniform_cache_shots[0] = 0;
const bool skip_preferred = hits * 256 < shots * 251;
uniform_buffer_skip_cache_size = skip_preferred ? DEFAULT_SKIP_CACHE_SIZE : 0;
// If we can obtain the memory info, use it instead of the estimate.
if (runtime.CanReportMemoryUsage()) {
total_used_memory = runtime.GetDeviceMemoryUsage();
}
if (total_used_memory >= minimum_memory) {
RunGarbageCollector();
}
++frame_tick;
delayed_destruction_ring.Tick();
}
template <class P>
void BufferCache<P>::WriteMemory(VAddr cpu_addr, u64 size) {
ForEachBufferInRange(cpu_addr, size, [&](BufferId, Buffer& buffer) {
buffer.MarkRegionAsCpuModified(cpu_addr, size);
});
}
template <class P>
void BufferCache<P>::CachedWriteMemory(VAddr cpu_addr, u64 size) {
ForEachBufferInRange(cpu_addr, size, [&](BufferId buffer_id, Buffer& buffer) {
if (!buffer.HasCachedWrites()) {
cached_write_buffer_ids.push_back(buffer_id);
}
buffer.CachedCpuWrite(cpu_addr, size);
});
}
template <class P>
void BufferCache<P>::DownloadMemory(VAddr cpu_addr, u64 size) {
ForEachBufferInRange(cpu_addr, size, [&](BufferId, Buffer& buffer) {
DownloadBufferMemory(buffer, cpu_addr, size);
});
}
template <class P>
void BufferCache<P>::ClearDownload(IntervalType subtract_interval) {
uncommitted_ranges.subtract(subtract_interval);
for (auto& interval_set : committed_ranges) {
interval_set.subtract(subtract_interval);
}
}
template <class P>
bool BufferCache<P>::DMACopy(GPUVAddr src_address, GPUVAddr dest_address, u64 amount) {
const std::optional<VAddr> cpu_src_address = gpu_memory->GpuToCpuAddress(src_address);
const std::optional<VAddr> cpu_dest_address = gpu_memory->GpuToCpuAddress(dest_address);
if (!cpu_src_address || !cpu_dest_address) {
return false;
}
const bool source_dirty = IsRegionRegistered(*cpu_src_address, amount);
const bool dest_dirty = IsRegionRegistered(*cpu_dest_address, amount);
if (!source_dirty && !dest_dirty) {
return false;
}
const IntervalType subtract_interval{*cpu_dest_address, *cpu_dest_address + amount};
ClearDownload(subtract_interval);
BufferId buffer_a;
BufferId buffer_b;
do {
has_deleted_buffers = false;
buffer_a = FindBuffer(*cpu_src_address, static_cast<u32>(amount));
buffer_b = FindBuffer(*cpu_dest_address, static_cast<u32>(amount));
} while (has_deleted_buffers);
auto& src_buffer = slot_buffers[buffer_a];
auto& dest_buffer = slot_buffers[buffer_b];
SynchronizeBuffer(src_buffer, *cpu_src_address, static_cast<u32>(amount));
SynchronizeBuffer(dest_buffer, *cpu_dest_address, static_cast<u32>(amount));
std::array copies{BufferCopy{
.src_offset = src_buffer.Offset(*cpu_src_address),
.dst_offset = dest_buffer.Offset(*cpu_dest_address),
.size = amount,
}};
boost::container::small_vector<IntervalType, 4> tmp_intervals;
auto mirror = [&](VAddr base_address, VAddr base_address_end) {
const u64 size = base_address_end - base_address;
const VAddr diff = base_address - *cpu_src_address;
const VAddr new_base_address = *cpu_dest_address + diff;
const IntervalType add_interval{new_base_address, new_base_address + size};
uncommitted_ranges.add(add_interval);
tmp_intervals.push_back(add_interval);
};
ForEachWrittenRange(*cpu_src_address, amount, mirror);
// This subtraction in this order is important for overlapping copies.
common_ranges.subtract(subtract_interval);
const bool has_new_downloads = tmp_intervals.size() != 0;
for (const IntervalType& add_interval : tmp_intervals) {
common_ranges.add(add_interval);
}
runtime.CopyBuffer(dest_buffer, src_buffer, copies);
if (has_new_downloads) {
dest_buffer.MarkRegionAsGpuModified(*cpu_dest_address, amount);
}
std::vector<u8> tmp_buffer(amount);
cpu_memory.ReadBlockUnsafe(*cpu_src_address, tmp_buffer.data(), amount);
cpu_memory.WriteBlockUnsafe(*cpu_dest_address, tmp_buffer.data(), amount);
return true;
}
template <class P>
bool BufferCache<P>::DMAClear(GPUVAddr dst_address, u64 amount, u32 value) {
const std::optional<VAddr> cpu_dst_address = gpu_memory->GpuToCpuAddress(dst_address);
if (!cpu_dst_address) {
return false;
}
const bool dest_dirty = IsRegionRegistered(*cpu_dst_address, amount);
if (!dest_dirty) {
return false;
}
const size_t size = amount * sizeof(u32);
const IntervalType subtract_interval{*cpu_dst_address, *cpu_dst_address + size};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
const BufferId buffer = FindBuffer(*cpu_dst_address, static_cast<u32>(size));
auto& dest_buffer = slot_buffers[buffer];
const u32 offset = dest_buffer.Offset(*cpu_dst_address);
runtime.ClearBuffer(dest_buffer, offset, size, value);
return true;
}
template <class P>
void BufferCache<P>::BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr,
u32 size) {
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr);
const Binding binding{
.cpu_addr = *cpu_addr,
.size = size,
.buffer_id = BufferId{},
};
uniform_buffers[stage][index] = binding;
}
template <class P>
void BufferCache<P>::DisableGraphicsUniformBuffer(size_t stage, u32 index) {
uniform_buffers[stage][index] = NULL_BINDING;
}
template <class P>
void BufferCache<P>::UpdateGraphicsBuffers(bool is_indexed) {
MICROPROFILE_SCOPE(GPU_PrepareBuffers);
do {
has_deleted_buffers = false;
DoUpdateGraphicsBuffers(is_indexed);
} while (has_deleted_buffers);
}
template <class P>
void BufferCache<P>::UpdateComputeBuffers() {
MICROPROFILE_SCOPE(GPU_PrepareBuffers);
do {
has_deleted_buffers = false;
DoUpdateComputeBuffers();
} while (has_deleted_buffers);
}
template <class P>
void BufferCache<P>::BindHostGeometryBuffers(bool is_indexed) {
MICROPROFILE_SCOPE(GPU_BindUploadBuffers);
if (is_indexed) {
BindHostIndexBuffer();
} else if constexpr (!HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT) {
const auto& draw_state = maxwell3d->draw_manager->GetDrawState();
if (draw_state.topology == Maxwell::PrimitiveTopology::Quads ||
draw_state.topology == Maxwell::PrimitiveTopology::QuadStrip) {
runtime.BindQuadIndexBuffer(draw_state.topology, draw_state.vertex_buffer.first,
draw_state.vertex_buffer.count);
}
}
BindHostVertexBuffers();
BindHostTransformFeedbackBuffers();
if (current_draw_indirect) {
BindHostDrawIndirectBuffers();
}
}
template <class P>
void BufferCache<P>::BindHostStageBuffers(size_t stage) {
MICROPROFILE_SCOPE(GPU_BindUploadBuffers);
BindHostGraphicsUniformBuffers(stage);
BindHostGraphicsStorageBuffers(stage);
BindHostGraphicsTextureBuffers(stage);
}
template <class P>
void BufferCache<P>::BindHostComputeBuffers() {
MICROPROFILE_SCOPE(GPU_BindUploadBuffers);
BindHostComputeUniformBuffers();
BindHostComputeStorageBuffers();
BindHostComputeTextureBuffers();
}
template <class P>
void BufferCache<P>::SetUniformBuffersState(const std::array<u32, NUM_STAGES>& mask,
const UniformBufferSizes* sizes) {
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
if (enabled_uniform_buffer_masks != mask) {
if constexpr (IS_OPENGL) {
fast_bound_uniform_buffers.fill(0);
}
dirty_uniform_buffers.fill(~u32{0});
uniform_buffer_binding_sizes.fill({});
}
}
enabled_uniform_buffer_masks = mask;
uniform_buffer_sizes = sizes;
}
template <class P>
void BufferCache<P>::SetComputeUniformBufferState(u32 mask,
const ComputeUniformBufferSizes* sizes) {
enabled_compute_uniform_buffer_mask = mask;
compute_uniform_buffer_sizes = sizes;
}
template <class P>
void BufferCache<P>::UnbindGraphicsStorageBuffers(size_t stage) {
enabled_storage_buffers[stage] = 0;
written_storage_buffers[stage] = 0;
}
template <class P>
void BufferCache<P>::BindGraphicsStorageBuffer(size_t stage, size_t ssbo_index, u32 cbuf_index,
u32 cbuf_offset, bool is_written) {
enabled_storage_buffers[stage] |= 1U << ssbo_index;
written_storage_buffers[stage] |= (is_written ? 1U : 0U) << ssbo_index;
const auto& cbufs = maxwell3d->state.shader_stages[stage];
const GPUVAddr ssbo_addr = cbufs.const_buffers[cbuf_index].address + cbuf_offset;
storage_buffers[stage][ssbo_index] = StorageBufferBinding(ssbo_addr, is_written);
}
template <class P>
void BufferCache<P>::UnbindGraphicsTextureBuffers(size_t stage) {
enabled_texture_buffers[stage] = 0;
written_texture_buffers[stage] = 0;
image_texture_buffers[stage] = 0;
}
template <class P>
void BufferCache<P>::BindGraphicsTextureBuffer(size_t stage, size_t tbo_index, GPUVAddr gpu_addr,
u32 size, PixelFormat format, bool is_written,
bool is_image) {
enabled_texture_buffers[stage] |= 1U << tbo_index;
written_texture_buffers[stage] |= (is_written ? 1U : 0U) << tbo_index;
if constexpr (SEPARATE_IMAGE_BUFFERS_BINDINGS) {
image_texture_buffers[stage] |= (is_image ? 1U : 0U) << tbo_index;
}
texture_buffers[stage][tbo_index] = GetTextureBufferBinding(gpu_addr, size, format);
}
template <class P>
void BufferCache<P>::UnbindComputeStorageBuffers() {
enabled_compute_storage_buffers = 0;
written_compute_storage_buffers = 0;
image_compute_texture_buffers = 0;
}
template <class P>
void BufferCache<P>::BindComputeStorageBuffer(size_t ssbo_index, u32 cbuf_index, u32 cbuf_offset,
bool is_written) {
enabled_compute_storage_buffers |= 1U << ssbo_index;
written_compute_storage_buffers |= (is_written ? 1U : 0U) << ssbo_index;
const auto& launch_desc = kepler_compute->launch_description;
ASSERT(((launch_desc.const_buffer_enable_mask >> cbuf_index) & 1) != 0);
const auto& cbufs = launch_desc.const_buffer_config;
const GPUVAddr ssbo_addr = cbufs[cbuf_index].Address() + cbuf_offset;
compute_storage_buffers[ssbo_index] = StorageBufferBinding(ssbo_addr, is_written);
}
template <class P>
void BufferCache<P>::UnbindComputeTextureBuffers() {
enabled_compute_texture_buffers = 0;
written_compute_texture_buffers = 0;
image_compute_texture_buffers = 0;
}
template <class P>
void BufferCache<P>::BindComputeTextureBuffer(size_t tbo_index, GPUVAddr gpu_addr, u32 size,
PixelFormat format, bool is_written, bool is_image) {
enabled_compute_texture_buffers |= 1U << tbo_index;
written_compute_texture_buffers |= (is_written ? 1U : 0U) << tbo_index;
if constexpr (SEPARATE_IMAGE_BUFFERS_BINDINGS) {
image_compute_texture_buffers |= (is_image ? 1U : 0U) << tbo_index;
}
compute_texture_buffers[tbo_index] = GetTextureBufferBinding(gpu_addr, size, format);
}
template <class P>
void BufferCache<P>::FlushCachedWrites() {
for (const BufferId buffer_id : cached_write_buffer_ids) {
slot_buffers[buffer_id].FlushCachedWrites();
}
cached_write_buffer_ids.clear();
}
template <class P>
bool BufferCache<P>::HasUncommittedFlushes() const noexcept {
return !uncommitted_ranges.empty() || !committed_ranges.empty();
}
template <class P>
void BufferCache<P>::AccumulateFlushes() {
if (Settings::values.gpu_accuracy.GetValue() != Settings::GPUAccuracy::High) {
uncommitted_ranges.clear();
return;
}
if (uncommitted_ranges.empty()) {
return;
}
committed_ranges.emplace_back(std::move(uncommitted_ranges));
}
template <class P>
bool BufferCache<P>::ShouldWaitAsyncFlushes() const noexcept {
return false;
}
template <class P>
void BufferCache<P>::CommitAsyncFlushesHigh() {
AccumulateFlushes();
if (committed_ranges.empty()) {
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
const bool is_accuracy_normal =
Settings::values.gpu_accuracy.GetValue() == Settings::GPUAccuracy::Normal;
auto it = committed_ranges.begin();
while (it != committed_ranges.end()) {
auto& current_intervals = *it;
auto next_it = std::next(it);
while (next_it != committed_ranges.end()) {
for (auto& interval : *next_it) {
current_intervals.subtract(interval);
}
next_it++;
}
it++;
}
boost::container::small_vector<std::pair<BufferCopy, BufferId>, 1> downloads;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
for (const IntervalSet& intervals : committed_ranges) {
for (auto& interval : intervals) {
const std::size_t size = interval.upper() - interval.lower();
const VAddr cpu_addr = interval.lower();
ForEachBufferInRange(cpu_addr, size, [&](BufferId buffer_id, Buffer& buffer) {
buffer.ForEachDownloadRangeAndClear(
cpu_addr, size, [&](u64 range_offset, u64 range_size) {
if (is_accuracy_normal) {
return;
}
const VAddr buffer_addr = buffer.CpuAddr();
const auto add_download = [&](VAddr start, VAddr end) {
const u64 new_offset = start - buffer_addr;
const u64 new_size = end - start;
downloads.push_back({
BufferCopy{
.src_offset = new_offset,
.dst_offset = total_size_bytes,
.size = new_size,
},
buffer_id,
});
// Align up to avoid cache conflicts
constexpr u64 align = 8ULL;
constexpr u64 mask = ~(align - 1ULL);
total_size_bytes += (new_size + align - 1) & mask;
largest_copy = std::max(largest_copy, new_size);
};
const VAddr start_address = buffer_addr + range_offset;
const VAddr end_address = start_address + range_size;
ForEachWrittenRange(start_address, range_size, add_download);
const IntervalType subtract_interval{start_address, end_address};
common_ranges.subtract(subtract_interval);
});
});
}
}
committed_ranges.clear();
if (downloads.empty()) {
return;
}
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
runtime.PreCopyBarrier();
for (auto& [copy, buffer_id] : downloads) {
// Have in mind the staging buffer offset for the copy
copy.dst_offset += download_staging.offset;
const std::array copies{copy};
runtime.CopyBuffer(download_staging.buffer, slot_buffers[buffer_id], copies, false);
}
runtime.PostCopyBarrier();
runtime.Finish();
for (const auto& [copy, buffer_id] : downloads) {
const Buffer& buffer = slot_buffers[buffer_id];
const VAddr cpu_addr = buffer.CpuAddr() + copy.src_offset;
// Undo the modified offset
const u64 dst_offset = copy.dst_offset - download_staging.offset;
const u8* read_mapped_memory = download_staging.mapped_span.data() + dst_offset;
cpu_memory.WriteBlockUnsafe(cpu_addr, read_mapped_memory, copy.size);
}
} else {
const std::span<u8> immediate_buffer = ImmediateBuffer(largest_copy);
for (const auto& [copy, buffer_id] : downloads) {
Buffer& buffer = slot_buffers[buffer_id];
buffer.ImmediateDownload(copy.src_offset, immediate_buffer.subspan(0, copy.size));
const VAddr cpu_addr = buffer.CpuAddr() + copy.src_offset;
cpu_memory.WriteBlockUnsafe(cpu_addr, immediate_buffer.data(), copy.size);
}
}
}
template <class P>
void BufferCache<P>::CommitAsyncFlushes() {
if (Settings::values.gpu_accuracy.GetValue() == Settings::GPUAccuracy::High) {
CommitAsyncFlushesHigh();
} else {
uncommitted_ranges.clear();
committed_ranges.clear();
}
}
template <class P>
void BufferCache<P>::PopAsyncFlushes() {}
template <class P>
bool BufferCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
const u64 page_end = Common::DivCeil(addr + size, YUZU_PAGESIZE);
for (u64 page = addr >> YUZU_PAGEBITS; page < page_end;) {
const BufferId image_id = page_table[page];
if (!image_id) {
++page;
continue;
}
Buffer& buffer = slot_buffers[image_id];
if (buffer.IsRegionGpuModified(addr, size)) {
return true;
}
const VAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
page = Common::DivCeil(end_addr, YUZU_PAGESIZE);
}
return false;
}
template <class P>
bool BufferCache<P>::IsRegionRegistered(VAddr addr, size_t size) {
const VAddr end_addr = addr + size;
const u64 page_end = Common::DivCeil(end_addr, YUZU_PAGESIZE);
for (u64 page = addr >> YUZU_PAGEBITS; page < page_end;) {
const BufferId buffer_id = page_table[page];
if (!buffer_id) {
++page;
continue;
}
Buffer& buffer = slot_buffers[buffer_id];
const VAddr buf_start_addr = buffer.CpuAddr();
const VAddr buf_end_addr = buf_start_addr + buffer.SizeBytes();
if (buf_start_addr < end_addr && addr < buf_end_addr) {
return true;
}
page = Common::DivCeil(end_addr, YUZU_PAGESIZE);
}
return false;
}
template <class P>
bool BufferCache<P>::IsRegionCpuModified(VAddr addr, size_t size) {
const u64 page_end = Common::DivCeil(addr + size, YUZU_PAGESIZE);
for (u64 page = addr >> YUZU_PAGEBITS; page < page_end;) {
const BufferId image_id = page_table[page];
if (!image_id) {
++page;
continue;
}
Buffer& buffer = slot_buffers[image_id];
if (buffer.IsRegionCpuModified(addr, size)) {
return true;
}
const VAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
page = Common::DivCeil(end_addr, YUZU_PAGESIZE);
}
return false;
}
template <class P>
void BufferCache<P>::BindHostIndexBuffer() {
Buffer& buffer = slot_buffers[index_buffer.buffer_id];
TouchBuffer(buffer, index_buffer.buffer_id);
const u32 offset = buffer.Offset(index_buffer.cpu_addr);
const u32 size = index_buffer.size;
const auto& draw_state = maxwell3d->draw_manager->GetDrawState();
if (!draw_state.inline_index_draw_indexes.empty()) {
if constexpr (USE_MEMORY_MAPS) {
auto upload_staging = runtime.UploadStagingBuffer(size);
std::array<BufferCopy, 1> copies{
{BufferCopy{.src_offset = upload_staging.offset, .dst_offset = 0, .size = size}}};
std::memcpy(upload_staging.mapped_span.data(),
draw_state.inline_index_draw_indexes.data(), size);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies);
} else {
buffer.ImmediateUpload(0, draw_state.inline_index_draw_indexes);
}
} else {
SynchronizeBuffer(buffer, index_buffer.cpu_addr, size);
}
if constexpr (HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT) {
const u32 new_offset =
offset + draw_state.index_buffer.first * draw_state.index_buffer.FormatSizeInBytes();
runtime.BindIndexBuffer(buffer, new_offset, size);
} else {
runtime.BindIndexBuffer(draw_state.topology, draw_state.index_buffer.format,
draw_state.index_buffer.first, draw_state.index_buffer.count,
buffer, offset, size);
}
}
template <class P>
void BufferCache<P>::BindHostVertexBuffers() {
auto& flags = maxwell3d->dirty.flags;
for (u32 index = 0; index < NUM_VERTEX_BUFFERS; ++index) {
const Binding& binding = vertex_buffers[index];
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
SynchronizeBuffer(buffer, binding.cpu_addr, binding.size);
if (!flags[Dirty::VertexBuffer0 + index]) {
continue;
}
flags[Dirty::VertexBuffer0 + index] = false;
const u32 stride = maxwell3d->regs.vertex_streams[index].stride;
const u32 offset = buffer.Offset(binding.cpu_addr);
runtime.BindVertexBuffer(index, buffer, offset, binding.size, stride);
}
}
template <class P>
void BufferCache<P>::BindHostDrawIndirectBuffers() {
const auto bind_buffer = [this](const Binding& binding) {
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
SynchronizeBuffer(buffer, binding.cpu_addr, binding.size);
};
if (current_draw_indirect->include_count) {
bind_buffer(count_buffer_binding);
}
bind_buffer(indirect_buffer_binding);
}
template <class P>
void BufferCache<P>::BindHostGraphicsUniformBuffers(size_t stage) {
u32 dirty = ~0U;
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
dirty = std::exchange(dirty_uniform_buffers[stage], 0);
}
u32 binding_index = 0;
ForEachEnabledBit(enabled_uniform_buffer_masks[stage], [&](u32 index) {
const bool needs_bind = ((dirty >> index) & 1) != 0;
BindHostGraphicsUniformBuffer(stage, index, binding_index, needs_bind);
if constexpr (NEEDS_BIND_UNIFORM_INDEX) {
++binding_index;
}
});
}
template <class P>
void BufferCache<P>::BindHostGraphicsUniformBuffer(size_t stage, u32 index, u32 binding_index,
bool needs_bind) {
const Binding& binding = uniform_buffers[stage][index];
const VAddr cpu_addr = binding.cpu_addr;
const u32 size = std::min(binding.size, (*uniform_buffer_sizes)[stage][index]);
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
const bool use_fast_buffer = binding.buffer_id != NULL_BUFFER_ID &&
size <= uniform_buffer_skip_cache_size &&
!buffer.IsRegionGpuModified(cpu_addr, size);
if (use_fast_buffer) {
if constexpr (IS_OPENGL) {
if (runtime.HasFastBufferSubData()) {
// Fast path for Nvidia
const bool should_fast_bind =
!HasFastUniformBufferBound(stage, binding_index) ||
uniform_buffer_binding_sizes[stage][binding_index] != size;
if (should_fast_bind) {
// We only have to bind when the currently bound buffer is not the fast version
fast_bound_uniform_buffers[stage] |= 1U << binding_index;
uniform_buffer_binding_sizes[stage][binding_index] = size;
runtime.BindFastUniformBuffer(stage, binding_index, size);
}
const auto span = ImmediateBufferWithData(cpu_addr, size);
runtime.PushFastUniformBuffer(stage, binding_index, span);
return;
}
}
if constexpr (IS_OPENGL) {
fast_bound_uniform_buffers[stage] |= 1U << binding_index;
uniform_buffer_binding_sizes[stage][binding_index] = size;
}
// Stream buffer path to avoid stalling on non-Nvidia drivers or Vulkan
const std::span<u8> span = runtime.BindMappedUniformBuffer(stage, binding_index, size);
cpu_memory.ReadBlockUnsafe(cpu_addr, span.data(), size);
return;
}
// Classic cached path
const bool sync_cached = SynchronizeBuffer(buffer, cpu_addr, size);
if (sync_cached) {
++uniform_cache_hits[0];
}
++uniform_cache_shots[0];
// Skip binding if it's not needed and if the bound buffer is not the fast version
// This exists to avoid instances where the fast buffer is bound and a GPU write happens
needs_bind |= HasFastUniformBufferBound(stage, binding_index);
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
needs_bind |= uniform_buffer_binding_sizes[stage][binding_index] != size;
}
if (!needs_bind) {
return;
}
const u32 offset = buffer.Offset(cpu_addr);
if constexpr (IS_OPENGL) {
// Fast buffer will be unbound
fast_bound_uniform_buffers[stage] &= ~(1U << binding_index);
// Mark the index as dirty if offset doesn't match
const bool is_copy_bind = offset != 0 && !runtime.SupportsNonZeroUniformOffset();
dirty_uniform_buffers[stage] |= (is_copy_bind ? 1U : 0U) << index;
}
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
uniform_buffer_binding_sizes[stage][binding_index] = size;
}
if constexpr (NEEDS_BIND_UNIFORM_INDEX) {
runtime.BindUniformBuffer(stage, binding_index, buffer, offset, size);
} else {
runtime.BindUniformBuffer(buffer, offset, size);
}
}
template <class P>
void BufferCache<P>::BindHostGraphicsStorageBuffers(size_t stage) {
u32 binding_index = 0;
ForEachEnabledBit(enabled_storage_buffers[stage], [&](u32 index) {
const Binding& binding = storage_buffers[stage][index];
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
const u32 size = binding.size;
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
const bool is_written = ((written_storage_buffers[stage] >> index) & 1) != 0;
if constexpr (NEEDS_BIND_STORAGE_INDEX) {
runtime.BindStorageBuffer(stage, binding_index, buffer, offset, size, is_written);
++binding_index;
} else {
runtime.BindStorageBuffer(buffer, offset, size, is_written);
}
});
}
template <class P>
void BufferCache<P>::BindHostGraphicsTextureBuffers(size_t stage) {
ForEachEnabledBit(enabled_texture_buffers[stage], [&](u32 index) {
const TextureBufferBinding& binding = texture_buffers[stage][index];
Buffer& buffer = slot_buffers[binding.buffer_id];
const u32 size = binding.size;
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
const PixelFormat format = binding.format;
if constexpr (SEPARATE_IMAGE_BUFFERS_BINDINGS) {
if (((image_texture_buffers[stage] >> index) & 1) != 0) {
runtime.BindImageBuffer(buffer, offset, size, format);
} else {
runtime.BindTextureBuffer(buffer, offset, size, format);
}
} else {
runtime.BindTextureBuffer(buffer, offset, size, format);
}
});
}
template <class P>
void BufferCache<P>::BindHostTransformFeedbackBuffers() {
if (maxwell3d->regs.transform_feedback_enabled == 0) {
return;
}
for (u32 index = 0; index < NUM_TRANSFORM_FEEDBACK_BUFFERS; ++index) {
const Binding& binding = transform_feedback_buffers[index];
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
const u32 size = binding.size;
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
runtime.BindTransformFeedbackBuffer(index, buffer, offset, size);
}
}
template <class P>
void BufferCache<P>::BindHostComputeUniformBuffers() {
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
// Mark all uniform buffers as dirty
dirty_uniform_buffers.fill(~u32{0});
fast_bound_uniform_buffers.fill(0);
}
u32 binding_index = 0;
ForEachEnabledBit(enabled_compute_uniform_buffer_mask, [&](u32 index) {
const Binding& binding = compute_uniform_buffers[index];
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
const u32 size = std::min(binding.size, (*compute_uniform_buffer_sizes)[index]);
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
if constexpr (NEEDS_BIND_UNIFORM_INDEX) {
runtime.BindComputeUniformBuffer(binding_index, buffer, offset, size);
++binding_index;
} else {
runtime.BindUniformBuffer(buffer, offset, size);
}
});
}
template <class P>
void BufferCache<P>::BindHostComputeStorageBuffers() {
u32 binding_index = 0;
ForEachEnabledBit(enabled_compute_storage_buffers, [&](u32 index) {
const Binding& binding = compute_storage_buffers[index];
Buffer& buffer = slot_buffers[binding.buffer_id];
TouchBuffer(buffer, binding.buffer_id);
const u32 size = binding.size;
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
const bool is_written = ((written_compute_storage_buffers >> index) & 1) != 0;
if constexpr (NEEDS_BIND_STORAGE_INDEX) {
runtime.BindComputeStorageBuffer(binding_index, buffer, offset, size, is_written);
++binding_index;
} else {
runtime.BindStorageBuffer(buffer, offset, size, is_written);
}
});
}
template <class P>
void BufferCache<P>::BindHostComputeTextureBuffers() {
ForEachEnabledBit(enabled_compute_texture_buffers, [&](u32 index) {
const TextureBufferBinding& binding = compute_texture_buffers[index];
Buffer& buffer = slot_buffers[binding.buffer_id];
const u32 size = binding.size;
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
const PixelFormat format = binding.format;
if constexpr (SEPARATE_IMAGE_BUFFERS_BINDINGS) {
if (((image_compute_texture_buffers >> index) & 1) != 0) {
runtime.BindImageBuffer(buffer, offset, size, format);
} else {
runtime.BindTextureBuffer(buffer, offset, size, format);
}
} else {
runtime.BindTextureBuffer(buffer, offset, size, format);
}
});
}
template <class P>
void BufferCache<P>::DoUpdateGraphicsBuffers(bool is_indexed) {
do {
has_deleted_buffers = false;
if (is_indexed) {
UpdateIndexBuffer();
}
UpdateVertexBuffers();
UpdateTransformFeedbackBuffers();
for (size_t stage = 0; stage < NUM_STAGES; ++stage) {
UpdateUniformBuffers(stage);
UpdateStorageBuffers(stage);
UpdateTextureBuffers(stage);
}
if (current_draw_indirect) {
UpdateDrawIndirect();
}
} while (has_deleted_buffers);
}
template <class P>
void BufferCache<P>::DoUpdateComputeBuffers() {
UpdateComputeUniformBuffers();
UpdateComputeStorageBuffers();
UpdateComputeTextureBuffers();
}
template <class P>
void BufferCache<P>::UpdateIndexBuffer() {
// We have to check for the dirty flags and index count
// The index count is currently changed without updating the dirty flags
const auto& draw_state = maxwell3d->draw_manager->GetDrawState();
const auto& index_array = draw_state.index_buffer;
auto& flags = maxwell3d->dirty.flags;
if (!flags[Dirty::IndexBuffer]) {
return;
}
flags[Dirty::IndexBuffer] = false;
last_index_count = index_array.count;
if (!draw_state.inline_index_draw_indexes.empty()) {
auto inline_index_size = static_cast<u32>(draw_state.inline_index_draw_indexes.size());
index_buffer = Binding{
.cpu_addr = 0,
.size = inline_index_size,
.buffer_id = CreateBuffer(0, inline_index_size),
};
return;
}
const GPUVAddr gpu_addr_begin = index_array.StartAddress();
const GPUVAddr gpu_addr_end = index_array.EndAddress();
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr_begin);
const u32 address_size = static_cast<u32>(gpu_addr_end - gpu_addr_begin);
const u32 draw_size = (index_array.count + index_array.first) * index_array.FormatSizeInBytes();
const u32 size = std::min(address_size, draw_size);
if (size == 0 || !cpu_addr) {
index_buffer = NULL_BINDING;
return;
}
index_buffer = Binding{
.cpu_addr = *cpu_addr,
.size = size,
.buffer_id = FindBuffer(*cpu_addr, size),
};
}
template <class P>
void BufferCache<P>::UpdateVertexBuffers() {
auto& flags = maxwell3d->dirty.flags;
if (!maxwell3d->dirty.flags[Dirty::VertexBuffers]) {
return;
}
flags[Dirty::VertexBuffers] = false;
for (u32 index = 0; index < NUM_VERTEX_BUFFERS; ++index) {
UpdateVertexBuffer(index);
}
}
template <class P>
void BufferCache<P>::UpdateVertexBuffer(u32 index) {
if (!maxwell3d->dirty.flags[Dirty::VertexBuffer0 + index]) {
return;
}
const auto& array = maxwell3d->regs.vertex_streams[index];
const auto& limit = maxwell3d->regs.vertex_stream_limits[index];
const GPUVAddr gpu_addr_begin = array.Address();
const GPUVAddr gpu_addr_end = limit.Address() + 1;
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr_begin);
u32 address_size = static_cast<u32>(
std::min(gpu_addr_end - gpu_addr_begin, static_cast<u64>(std::numeric_limits<u32>::max())));
if (array.enable == 0 || address_size == 0 || !cpu_addr) {
vertex_buffers[index] = NULL_BINDING;
return;
}
if (!gpu_memory->IsWithinGPUAddressRange(gpu_addr_end)) {
address_size =
static_cast<u32>(gpu_memory->MaxContinousRange(gpu_addr_begin, address_size));
}
const u32 size = address_size; // TODO: Analyze stride and number of vertices
vertex_buffers[index] = Binding{
.cpu_addr = *cpu_addr,
.size = size,
.buffer_id = FindBuffer(*cpu_addr, size),
};
}
template <class P>
void BufferCache<P>::UpdateDrawIndirect() {
const auto update = [this](GPUVAddr gpu_addr, size_t size, Binding& binding) {
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr);
if (!cpu_addr) {
binding = NULL_BINDING;
return;
}
binding = Binding{
.cpu_addr = *cpu_addr,
.size = static_cast<u32>(size),
.buffer_id = FindBuffer(*cpu_addr, static_cast<u32>(size)),
};
};
if (current_draw_indirect->include_count) {
update(current_draw_indirect->count_start_address, sizeof(u32), count_buffer_binding);
}
update(current_draw_indirect->indirect_start_address, current_draw_indirect->buffer_size,
indirect_buffer_binding);
}
template <class P>
void BufferCache<P>::UpdateUniformBuffers(size_t stage) {
ForEachEnabledBit(enabled_uniform_buffer_masks[stage], [&](u32 index) {
Binding& binding = uniform_buffers[stage][index];
if (binding.buffer_id) {
// Already updated
return;
}
// Mark as dirty
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
dirty_uniform_buffers[stage] |= 1U << index;
}
// Resolve buffer
binding.buffer_id = FindBuffer(binding.cpu_addr, binding.size);
});
}
template <class P>
void BufferCache<P>::UpdateStorageBuffers(size_t stage) {
const u32 written_mask = written_storage_buffers[stage];
ForEachEnabledBit(enabled_storage_buffers[stage], [&](u32 index) {
// Resolve buffer
Binding& binding = storage_buffers[stage][index];
const BufferId buffer_id = FindBuffer(binding.cpu_addr, binding.size);
binding.buffer_id = buffer_id;
// Mark buffer as written if needed
if (((written_mask >> index) & 1) != 0) {
MarkWrittenBuffer(buffer_id, binding.cpu_addr, binding.size);
}
});
}
template <class P>
void BufferCache<P>::UpdateTextureBuffers(size_t stage) {
ForEachEnabledBit(enabled_texture_buffers[stage], [&](u32 index) {
Binding& binding = texture_buffers[stage][index];
binding.buffer_id = FindBuffer(binding.cpu_addr, binding.size);
// Mark buffer as written if needed
if (((written_texture_buffers[stage] >> index) & 1) != 0) {
MarkWrittenBuffer(binding.buffer_id, binding.cpu_addr, binding.size);
}
});
}
template <class P>
void BufferCache<P>::UpdateTransformFeedbackBuffers() {
if (maxwell3d->regs.transform_feedback_enabled == 0) {
return;
}
for (u32 index = 0; index < NUM_TRANSFORM_FEEDBACK_BUFFERS; ++index) {
UpdateTransformFeedbackBuffer(index);
}
}
template <class P>
void BufferCache<P>::UpdateTransformFeedbackBuffer(u32 index) {
const auto& binding = maxwell3d->regs.transform_feedback.buffers[index];
const GPUVAddr gpu_addr = binding.Address() + binding.start_offset;
const u32 size = binding.size;
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr);
if (binding.enable == 0 || size == 0 || !cpu_addr) {
transform_feedback_buffers[index] = NULL_BINDING;
return;
}
const BufferId buffer_id = FindBuffer(*cpu_addr, size);
transform_feedback_buffers[index] = Binding{
.cpu_addr = *cpu_addr,
.size = size,
.buffer_id = buffer_id,
};
MarkWrittenBuffer(buffer_id, *cpu_addr, size);
}
template <class P>
void BufferCache<P>::UpdateComputeUniformBuffers() {
ForEachEnabledBit(enabled_compute_uniform_buffer_mask, [&](u32 index) {
Binding& binding = compute_uniform_buffers[index];
binding = NULL_BINDING;
const auto& launch_desc = kepler_compute->launch_description;
if (((launch_desc.const_buffer_enable_mask >> index) & 1) != 0) {
const auto& cbuf = launch_desc.const_buffer_config[index];
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(cbuf.Address());
if (cpu_addr) {
binding.cpu_addr = *cpu_addr;
binding.size = cbuf.size;
}
}
binding.buffer_id = FindBuffer(binding.cpu_addr, binding.size);
});
}
template <class P>
void BufferCache<P>::UpdateComputeStorageBuffers() {
ForEachEnabledBit(enabled_compute_storage_buffers, [&](u32 index) {
// Resolve buffer
Binding& binding = compute_storage_buffers[index];
binding.buffer_id = FindBuffer(binding.cpu_addr, binding.size);
// Mark as written if needed
if (((written_compute_storage_buffers >> index) & 1) != 0) {
MarkWrittenBuffer(binding.buffer_id, binding.cpu_addr, binding.size);
}
});
}
template <class P>
void BufferCache<P>::UpdateComputeTextureBuffers() {
ForEachEnabledBit(enabled_compute_texture_buffers, [&](u32 index) {
Binding& binding = compute_texture_buffers[index];
binding.buffer_id = FindBuffer(binding.cpu_addr, binding.size);
// Mark as written if needed
if (((written_compute_texture_buffers >> index) & 1) != 0) {
MarkWrittenBuffer(binding.buffer_id, binding.cpu_addr, binding.size);
}
});
}
template <class P>
void BufferCache<P>::MarkWrittenBuffer(BufferId buffer_id, VAddr cpu_addr, u32 size) {
Buffer& buffer = slot_buffers[buffer_id];
buffer.MarkRegionAsGpuModified(cpu_addr, size);
const IntervalType base_interval{cpu_addr, cpu_addr + size};
common_ranges.add(base_interval);
const bool is_async = Settings::values.use_asynchronous_gpu_emulation.GetValue();
if (!is_async) {
return;
}
uncommitted_ranges.add(base_interval);
}
template <class P>
BufferId BufferCache<P>::FindBuffer(VAddr cpu_addr, u32 size) {
if (cpu_addr == 0) {
return NULL_BUFFER_ID;
}
const u64 page = cpu_addr >> YUZU_PAGEBITS;
const BufferId buffer_id = page_table[page];
if (!buffer_id) {
return CreateBuffer(cpu_addr, size);
}
const Buffer& buffer = slot_buffers[buffer_id];
if (buffer.IsInBounds(cpu_addr, size)) {
return buffer_id;
}
return CreateBuffer(cpu_addr, size);
}
template <class P>
typename BufferCache<P>::OverlapResult BufferCache<P>::ResolveOverlaps(VAddr cpu_addr,
u32 wanted_size) {
static constexpr int STREAM_LEAP_THRESHOLD = 16;
std::vector<BufferId> overlap_ids;
VAddr begin = cpu_addr;
VAddr end = cpu_addr + wanted_size;
int stream_score = 0;
bool has_stream_leap = false;
if (begin == 0) {
return OverlapResult{
.ids = std::move(overlap_ids),
.begin = begin,
.end = end,
.has_stream_leap = has_stream_leap,
};
}
for (; cpu_addr >> YUZU_PAGEBITS < Common::DivCeil(end, YUZU_PAGESIZE);
cpu_addr += YUZU_PAGESIZE) {
const BufferId overlap_id = page_table[cpu_addr >> YUZU_PAGEBITS];
if (!overlap_id) {
continue;
}
Buffer& overlap = slot_buffers[overlap_id];
if (overlap.IsPicked()) {
continue;
}
overlap_ids.push_back(overlap_id);
overlap.Pick();
const VAddr overlap_cpu_addr = overlap.CpuAddr();
const bool expands_left = overlap_cpu_addr < begin;
if (expands_left) {
cpu_addr = begin = overlap_cpu_addr;
}
const VAddr overlap_end = overlap_cpu_addr + overlap.SizeBytes();
const bool expands_right = overlap_end > end;
if (overlap_end > end) {
end = overlap_end;
}
stream_score += overlap.StreamScore();
if (stream_score > STREAM_LEAP_THRESHOLD && !has_stream_leap) {
// When this memory region has been joined a bunch of times, we assume it's being used
// as a stream buffer. Increase the size to skip constantly recreating buffers.
has_stream_leap = true;
if (expands_right) {
begin -= YUZU_PAGESIZE * 256;
cpu_addr = begin;
}
if (expands_left) {
end += YUZU_PAGESIZE * 256;
}
}
}
return OverlapResult{
.ids = std::move(overlap_ids),
.begin = begin,
.end = end,
.has_stream_leap = has_stream_leap,
};
}
template <class P>
void BufferCache<P>::JoinOverlap(BufferId new_buffer_id, BufferId overlap_id,
bool accumulate_stream_score) {
Buffer& new_buffer = slot_buffers[new_buffer_id];
Buffer& overlap = slot_buffers[overlap_id];
if (accumulate_stream_score) {
new_buffer.IncreaseStreamScore(overlap.StreamScore() + 1);
}
std::vector<BufferCopy> copies;
const size_t dst_base_offset = overlap.CpuAddr() - new_buffer.CpuAddr();
overlap.ForEachDownloadRange([&](u64 begin, u64 range_size) {
copies.push_back(BufferCopy{
.src_offset = begin,
.dst_offset = dst_base_offset + begin,
.size = range_size,
});
new_buffer.UnmarkRegionAsCpuModified(begin, range_size);
new_buffer.MarkRegionAsGpuModified(begin, range_size);
});
if (!copies.empty()) {
runtime.CopyBuffer(slot_buffers[new_buffer_id], overlap, copies);
}
DeleteBuffer(overlap_id);
}
template <class P>
BufferId BufferCache<P>::CreateBuffer(VAddr cpu_addr, u32 wanted_size) {
const OverlapResult overlap = ResolveOverlaps(cpu_addr, wanted_size);
const u32 size = static_cast<u32>(overlap.end - overlap.begin);
const BufferId new_buffer_id = slot_buffers.insert(runtime, rasterizer, overlap.begin, size);
auto& new_buffer = slot_buffers[new_buffer_id];
runtime.ClearBuffer(new_buffer, 0, new_buffer.SizeBytes(), 0);
for (const BufferId overlap_id : overlap.ids) {
JoinOverlap(new_buffer_id, overlap_id, !overlap.has_stream_leap);
}
Register(new_buffer_id);
TouchBuffer(slot_buffers[new_buffer_id], new_buffer_id);
return new_buffer_id;
}
template <class P>
void BufferCache<P>::Register(BufferId buffer_id) {
ChangeRegister<true>(buffer_id);
}
template <class P>
void BufferCache<P>::Unregister(BufferId buffer_id) {
ChangeRegister<false>(buffer_id);
}
template <class P>
template <bool insert>
void BufferCache<P>::ChangeRegister(BufferId buffer_id) {
Buffer& buffer = slot_buffers[buffer_id];
const auto size = buffer.SizeBytes();
if (insert) {
total_used_memory += Common::AlignUp(size, 1024);
buffer.setLRUID(lru_cache.Insert(buffer_id, frame_tick));
} else {
total_used_memory -= Common::AlignUp(size, 1024);
lru_cache.Free(buffer.getLRUID());
}
const VAddr cpu_addr_begin = buffer.CpuAddr();
const VAddr cpu_addr_end = cpu_addr_begin + size;
const u64 page_begin = cpu_addr_begin / YUZU_PAGESIZE;
const u64 page_end = Common::DivCeil(cpu_addr_end, YUZU_PAGESIZE);
for (u64 page = page_begin; page != page_end; ++page) {
if constexpr (insert) {
page_table[page] = buffer_id;
} else {
page_table[page] = BufferId{};
}
}
}
template <class P>
void BufferCache<P>::TouchBuffer(Buffer& buffer, BufferId buffer_id) noexcept {
if (buffer_id != NULL_BUFFER_ID) {
lru_cache.Touch(buffer.getLRUID(), frame_tick);
}
}
template <class P>
bool BufferCache<P>::SynchronizeBuffer(Buffer& buffer, VAddr cpu_addr, u32 size) {
if (buffer.CpuAddr() == 0) {
return true;
}
return SynchronizeBufferImpl(buffer, cpu_addr, size);
}
template <class P>
bool BufferCache<P>::SynchronizeBufferImpl(Buffer& buffer, VAddr cpu_addr, u32 size) {
boost::container::small_vector<BufferCopy, 4> copies;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
buffer.ForEachUploadRange(cpu_addr, size, [&](u64 range_offset, u64 range_size) {
copies.push_back(BufferCopy{
.src_offset = total_size_bytes,
.dst_offset = range_offset,
.size = range_size,
});
total_size_bytes += range_size;
largest_copy = std::max(largest_copy, range_size);
});
if (total_size_bytes == 0) {
return true;
}
const std::span<BufferCopy> copies_span(copies.data(), copies.size());
UploadMemory(buffer, total_size_bytes, largest_copy, copies_span);
return false;
}
template <class P>
void BufferCache<P>::UploadMemory(Buffer& buffer, u64 total_size_bytes, u64 largest_copy,
std::span<BufferCopy> copies) {
if constexpr (USE_MEMORY_MAPS) {
MappedUploadMemory(buffer, total_size_bytes, copies);
} else {
ImmediateUploadMemory(buffer, largest_copy, copies);
}
}
template <class P>
void BufferCache<P>::ImmediateUploadMemory(Buffer& buffer, u64 largest_copy,
std::span<const BufferCopy> copies) {
std::span<u8> immediate_buffer;
for (const BufferCopy& copy : copies) {
std::span<const u8> upload_span;
const VAddr cpu_addr = buffer.CpuAddr() + copy.dst_offset;
if (IsRangeGranular(cpu_addr, copy.size)) {
upload_span = std::span(cpu_memory.GetPointer(cpu_addr), copy.size);
} else {
if (immediate_buffer.empty()) {
immediate_buffer = ImmediateBuffer(largest_copy);
}
cpu_memory.ReadBlockUnsafe(cpu_addr, immediate_buffer.data(), copy.size);
upload_span = immediate_buffer.subspan(0, copy.size);
}
buffer.ImmediateUpload(copy.dst_offset, upload_span);
}
}
template <class P>
void BufferCache<P>::MappedUploadMemory(Buffer& buffer, u64 total_size_bytes,
std::span<BufferCopy> copies) {
auto upload_staging = runtime.UploadStagingBuffer(total_size_bytes);
const std::span<u8> staging_pointer = upload_staging.mapped_span;
for (BufferCopy& copy : copies) {
u8* const src_pointer = staging_pointer.data() + copy.src_offset;
const VAddr cpu_addr = buffer.CpuAddr() + copy.dst_offset;
cpu_memory.ReadBlockUnsafe(cpu_addr, src_pointer, copy.size);
// Apply the staging offset
copy.src_offset += upload_staging.offset;
}
runtime.CopyBuffer(buffer, upload_staging.buffer, copies);
}
template <class P>
bool BufferCache<P>::InlineMemory(VAddr dest_address, size_t copy_size,
std::span<const u8> inlined_buffer) {
const bool is_dirty = IsRegionRegistered(dest_address, copy_size);
if (!is_dirty) {
return false;
}
if (!IsRegionGpuModified(dest_address, copy_size)) {
return false;
}
const IntervalType subtract_interval{dest_address, dest_address + copy_size};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
BufferId buffer_id = FindBuffer(dest_address, static_cast<u32>(copy_size));
auto& buffer = slot_buffers[buffer_id];
SynchronizeBuffer(buffer, dest_address, static_cast<u32>(copy_size));
if constexpr (USE_MEMORY_MAPS) {
auto upload_staging = runtime.UploadStagingBuffer(copy_size);
std::array copies{BufferCopy{
.src_offset = upload_staging.offset,
.dst_offset = buffer.Offset(dest_address),
.size = copy_size,
}};
u8* const src_pointer = upload_staging.mapped_span.data();
std::memcpy(src_pointer, inlined_buffer.data(), copy_size);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies);
} else {
buffer.ImmediateUpload(buffer.Offset(dest_address), inlined_buffer.first(copy_size));
}
return true;
}
template <class P>
void BufferCache<P>::DownloadBufferMemory(Buffer& buffer) {
DownloadBufferMemory(buffer, buffer.CpuAddr(), buffer.SizeBytes());
}
template <class P>
void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, VAddr cpu_addr, u64 size) {
boost::container::small_vector<BufferCopy, 1> copies;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
buffer.ForEachDownloadRangeAndClear(cpu_addr, size, [&](u64 range_offset, u64 range_size) {
const VAddr buffer_addr = buffer.CpuAddr();
const auto add_download = [&](VAddr start, VAddr end) {
const u64 new_offset = start - buffer_addr;
const u64 new_size = end - start;
copies.push_back(BufferCopy{
.src_offset = new_offset,
.dst_offset = total_size_bytes,
.size = new_size,
});
// Align up to avoid cache conflicts
constexpr u64 align = 256ULL;
constexpr u64 mask = ~(align - 1ULL);
total_size_bytes += (new_size + align - 1) & mask;
largest_copy = std::max(largest_copy, new_size);
};
const VAddr start_address = buffer_addr + range_offset;
const VAddr end_address = start_address + range_size;
ForEachWrittenRange(start_address, range_size, add_download);
const IntervalType subtract_interval{start_address, end_address};
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
});
if (total_size_bytes == 0) {
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
const u8* const mapped_memory = download_staging.mapped_span.data();
const std::span<BufferCopy> copies_span(copies.data(), copies.data() + copies.size());
for (BufferCopy& copy : copies) {
// Modify copies to have the staging offset in mind
copy.dst_offset += download_staging.offset;
}
runtime.CopyBuffer(download_staging.buffer, buffer, copies_span);
runtime.Finish();
for (const BufferCopy& copy : copies) {
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;
// Undo the modified offset
const u64 dst_offset = copy.dst_offset - download_staging.offset;
const u8* copy_mapped_memory = mapped_memory + dst_offset;
cpu_memory.WriteBlockUnsafe(copy_cpu_addr, copy_mapped_memory, copy.size);
}
} else {
const std::span<u8> immediate_buffer = ImmediateBuffer(largest_copy);
for (const BufferCopy& copy : copies) {
buffer.ImmediateDownload(copy.src_offset, immediate_buffer.subspan(0, copy.size));
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;
cpu_memory.WriteBlockUnsafe(copy_cpu_addr, immediate_buffer.data(), copy.size);
}
}
}
template <class P>
void BufferCache<P>::DeleteBuffer(BufferId buffer_id) {
const auto scalar_replace = [buffer_id](Binding& binding) {
if (binding.buffer_id == buffer_id) {
binding.buffer_id = BufferId{};
}
};
const auto replace = [scalar_replace](std::span<Binding> bindings) {
std::ranges::for_each(bindings, scalar_replace);
};
scalar_replace(index_buffer);
replace(vertex_buffers);
std::ranges::for_each(uniform_buffers, replace);
std::ranges::for_each(storage_buffers, replace);
replace(transform_feedback_buffers);
replace(compute_uniform_buffers);
replace(compute_storage_buffers);
std::erase(cached_write_buffer_ids, buffer_id);
// Mark the whole buffer as CPU written to stop tracking CPU writes
Buffer& buffer = slot_buffers[buffer_id];
buffer.MarkRegionAsCpuModified(buffer.CpuAddr(), buffer.SizeBytes());
Unregister(buffer_id);
delayed_destruction_ring.Push(std::move(slot_buffers[buffer_id]));
slot_buffers.erase(buffer_id);
NotifyBufferDeletion();
}
template <class P>
void BufferCache<P>::NotifyBufferDeletion() {
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
dirty_uniform_buffers.fill(~u32{0});
uniform_buffer_binding_sizes.fill({});
}
auto& flags = maxwell3d->dirty.flags;
flags[Dirty::IndexBuffer] = true;
flags[Dirty::VertexBuffers] = true;
for (u32 index = 0; index < NUM_VERTEX_BUFFERS; ++index) {
flags[Dirty::VertexBuffer0 + index] = true;
}
has_deleted_buffers = true;
}
template <class P>
typename BufferCache<P>::Binding BufferCache<P>::StorageBufferBinding(GPUVAddr ssbo_addr,
bool is_written) const {
const GPUVAddr gpu_addr = gpu_memory->Read<u64>(ssbo_addr);
const u32 size = gpu_memory->Read<u32>(ssbo_addr + 8);
const u32 alignment = runtime.GetStorageBufferAlignment();
const GPUVAddr aligned_gpu_addr = Common::AlignDown(gpu_addr, alignment);
const u32 aligned_size =
Common::AlignUp(static_cast<u32>(gpu_addr - aligned_gpu_addr) + size, alignment);
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(aligned_gpu_addr);
if (!cpu_addr || size == 0) {
return NULL_BINDING;
}
const VAddr cpu_end = Common::AlignUp(*cpu_addr + aligned_size, Core::Memory::YUZU_PAGESIZE);
const Binding binding{
.cpu_addr = *cpu_addr,
.size = is_written ? aligned_size : static_cast<u32>(cpu_end - *cpu_addr),
.buffer_id = BufferId{},
};
return binding;
}
template <class P>
typename BufferCache<P>::TextureBufferBinding BufferCache<P>::GetTextureBufferBinding(
GPUVAddr gpu_addr, u32 size, PixelFormat format) {
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr);
TextureBufferBinding binding;
if (!cpu_addr || size == 0) {
binding.cpu_addr = 0;
binding.size = 0;
binding.buffer_id = NULL_BUFFER_ID;
binding.format = PixelFormat::Invalid;
} else {
binding.cpu_addr = *cpu_addr;
binding.size = size;
binding.buffer_id = BufferId{};
binding.format = format;
}
return binding;
}
template <class P>
std::span<const u8> BufferCache<P>::ImmediateBufferWithData(VAddr cpu_addr, size_t size) {
u8* const base_pointer = cpu_memory.GetPointer(cpu_addr);
if (IsRangeGranular(cpu_addr, size) ||
base_pointer + size == cpu_memory.GetPointer(cpu_addr + size)) {
return std::span(base_pointer, size);
} else {
const std::span<u8> span = ImmediateBuffer(size);
cpu_memory.ReadBlockUnsafe(cpu_addr, span.data(), size);
return span;
}
}
template <class P>
std::span<u8> BufferCache<P>::ImmediateBuffer(size_t wanted_capacity) {
immediate_buffer_alloc.resize_destructive(wanted_capacity);
return std::span<u8>(immediate_buffer_alloc.data(), wanted_capacity);
}
template <class P>
bool BufferCache<P>::HasFastUniformBufferBound(size_t stage, u32 binding_index) const noexcept {
if constexpr (IS_OPENGL) {
return ((fast_bound_uniform_buffers[stage] >> binding_index) & 1) != 0;
} else {
// Only OpenGL has fast uniform buffers
return false;
}
}
template <class P>
std::pair<typename BufferCache<P>::Buffer*, u32> BufferCache<P>::GetDrawIndirectCount() {
auto& buffer = slot_buffers[count_buffer_binding.buffer_id];
return std::make_pair(&buffer, buffer.Offset(count_buffer_binding.cpu_addr));
}
template <class P>
std::pair<typename BufferCache<P>::Buffer*, u32> BufferCache<P>::GetDrawIndirectBuffer() {
auto& buffer = slot_buffers[indirect_buffer_binding.buffer_id];
return std::make_pair(&buffer, buffer.Offset(indirect_buffer_binding.cpu_addr));
}
} // namespace VideoCommon