dynarmic/tests/A64/fuzz_with_unicorn.cpp
2020-04-22 20:42:45 +01:00

169 lines
4.7 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <cstring>
#include <catch.hpp>
#include <unicorn/arm64.h>
#include "frontend/A64/location_descriptor.h"
#include "frontend/A64/translate/translate.h"
#include "frontend/ir/basic_block.h"
#include "inst_gen.h"
#include "rand_int.h"
#include "testenv.h"
#include "unicorn_emu/unicorn.h"
using namespace Dynarmic;
TEST_CASE("A64: Unicorn sanity test", "[a64]") {
TestEnv env;
env.code_mem[0] = 0x8b020020; // ADD X0, X1, X2
env.code_mem[1] = 0x14000000; // B .
std::array<u64, 31> regs {
0, 1, 2, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0
};
Unicorn unicorn{env};
unicorn.SetRegisters(regs);
unicorn.SetPC(0);
env.ticks_left = 2;
unicorn.Run();
REQUIRE(unicorn.GetRegisters()[0] == 3);
REQUIRE(unicorn.GetRegisters()[1] == 1);
REQUIRE(unicorn.GetRegisters()[2] == 2);
REQUIRE(unicorn.GetPC() == 4);
}
TEST_CASE("A64: Ensure 0xFFFF'FFFF'FFFF'FFFF is readable", "[a64]") {
TestEnv env;
env.code_mem[0] = 0x385fed99; // LDRB W25, [X12, #0xfffffffffffffffe]!
env.code_mem[1] = 0x14000000; // B .
std::array<u64, 31> regs{};
regs[12] = 1;
Unicorn unicorn{env};
unicorn.SetRegisters(regs);
unicorn.SetPC(0);
env.ticks_left = 2;
unicorn.Run();
REQUIRE(unicorn.GetPC() == 4);
}
TEST_CASE("A64: Ensure is able to read across page boundaries", "[a64]") {
TestEnv env;
env.code_mem[0] = 0xb85f93d9; // LDUR W25, [X30, #0xfffffffffffffff9]
env.code_mem[1] = 0x14000000; // B .
std::array<u64, 31> regs{};
regs[30] = 4;
Unicorn unicorn{env};
unicorn.SetRegisters(regs);
unicorn.SetPC(0);
env.ticks_left = 2;
unicorn.Run();
REQUIRE(unicorn.GetPC() == 4);
}
static std::vector<InstructionGenerator> instruction_generators = []{
const std::vector<std::tuple<const char*, const char*>> list {
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "frontend/A64/decoder/a64.inc"
#undef INST
};
std::vector<InstructionGenerator> result;
for (const auto& [fn, bitstring] : list) {
if (std::strcmp(fn, "UnallocatedEncoding") == 0) {
InstructionGenerator::AddInvalidInstruction(bitstring);
continue;
}
result.emplace_back(InstructionGenerator{bitstring});
}
return result;
}();
static u32 GenRandomInst(u64 pc) {
const A64::LocationDescriptor location{pc, {}};
restart:
const size_t index = RandInt<size_t>(0, instruction_generators.size() - 1);
const u32 instruction = instruction_generators[index].Generate();
IR::Block block{location};
bool should_continue = A64::TranslateSingleInstruction(block, location, instruction);
if (!should_continue)
goto restart;
for (const auto& ir_inst : block)
if (ir_inst.IsMemoryWrite() || ir_inst.GetOpcode() == IR::Opcode::A64ExceptionRaised || ir_inst.GetOpcode() == IR::Opcode::A64CallSupervisor)
goto restart;
return instruction;
}
static void TestInstance(const std::array<u64, 31>& regs, const std::vector<u32>& instructions, u32 pstate) {
TestEnv jit_env;
TestEnv uni_env;
std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin());
std::copy(instructions.begin(), instructions.end(), uni_env.code_mem.begin());
jit_env.code_mem[instructions.size()] = 0x14000000; // B .
uni_env.code_mem[instructions.size()] = 0x14000000; // B .
Dynarmic::A64::Jit jit{Dynarmic::A64::UserConfig{&jit_env}};
Unicorn uni{uni_env};
jit.SetRegisters(regs);
jit.SetPC(0);
jit.SetSP(0x8000000);
jit.SetPstate(pstate);
uni.SetRegisters(regs);
uni.SetPC(0);
uni.SetSP(0x8000000);
uni.SetPstate(pstate);
jit_env.ticks_left = instructions.size();
jit.Run();
uni_env.ticks_left = instructions.size();
uni.Run();
REQUIRE(uni.GetRegisters() == jit.GetRegisters());
REQUIRE(uni.GetPC() == jit.GetPC());
REQUIRE(uni.GetSP() == jit.GetSP());
REQUIRE((uni.GetPstate() & 0xF0000000) == (jit.GetPstate() & 0xF0000000));
}
TEST_CASE("A64: Single random instruction", "[a64]") {
for (size_t iteration = 0; iteration < 100000; ++iteration) {
std::array<u64, 31> regs;
std::generate_n(regs.begin(), 31, []{ return RandInt<u64>(0, ~u64(0)); });
std::vector<u32> instructions;
instructions.push_back(GenRandomInst(0));
u32 pstate = RandInt<u32>(0, 0xF) << 28;
// printf("%08x\n", instructions[0]);
TestInstance(regs, instructions, pstate);
}
}