dynarmic/tests/arm/fuzz_arm.cpp

631 lines
25 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <cinttypes>
#include <cstring>
#include <functional>
#include <catch.hpp>
#include <frontend/ir/ir.h>
#include <ir_opt/passes.h>
#include <frontend/translate/translate.h>
#include "common/bit_util.h"
#include "common/common_types.h"
#include "frontend/disassembler/disassembler.h"
#include "interface/interface.h"
#include "rand_int.h"
#include "skyeye_interpreter/dyncom/arm_dyncom_interpreter.h"
#include "skyeye_interpreter/skyeye_common/armstate.h"
struct WriteRecord {
size_t size;
u32 address;
u64 data;
};
static bool operator==(const WriteRecord& a, const WriteRecord& b) {
return std::tie(a.size, a.address, a.data) == std::tie(b.size, b.address, b.data);
}
static std::array<u32, 3000> code_mem{};
static std::vector<WriteRecord> write_records;
static bool IsReadOnlyMemory(u32 vaddr);
static u8 MemoryRead8(u32 vaddr);
static u16 MemoryRead16(u32 vaddr);
static u32 MemoryRead32(u32 vaddr);
static u64 MemoryRead64(u32 vaddr);
static void MemoryWrite8(u32 vaddr, u8 value);
static void MemoryWrite16(u32 vaddr, u16 value);
static void MemoryWrite32(u32 vaddr, u32 value);
static void MemoryWrite64(u32 vaddr, u64 value);
static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit);
static Dynarmic::UserCallbacks GetUserCallbacks();
static bool IsReadOnlyMemory(u32 vaddr) {
return vaddr < code_mem.size();
}
static u8 MemoryRead8(u32 vaddr) {
return static_cast<u8>(vaddr);
}
static u16 MemoryRead16(u32 vaddr) {
return static_cast<u16>(vaddr);
}
static u32 MemoryRead32(u32 vaddr) {
if (vaddr < code_mem.size() * sizeof(u32)) {
size_t index = vaddr / sizeof(u32);
return code_mem[index];
}
return vaddr;
}
static u64 MemoryRead64(u32 vaddr) {
return vaddr;
}
static void MemoryWrite8(u32 vaddr, u8 value){
write_records.push_back({8, vaddr, value});
}
static void MemoryWrite16(u32 vaddr, u16 value){
write_records.push_back({16, vaddr, value});
}
static void MemoryWrite32(u32 vaddr, u32 value){
write_records.push_back({32, vaddr, value});
}
static void MemoryWrite64(u32 vaddr, u64 value){
write_records.push_back({64, vaddr, value});
}
static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit) {
ARMul_State interp_state{USER32MODE};
interp_state.user_callbacks = GetUserCallbacks();
interp_state.NumInstrsToExecute = 1;
interp_state.Reg = jit->Regs();
interp_state.Cpsr = jit->Cpsr();
interp_state.Reg[15] = pc;
InterpreterClearCache();
InterpreterMainLoop(&interp_state);
bool T = Dynarmic::Common::Bit<5>(interp_state.Cpsr);
interp_state.Reg[15] &= T ? 0xFFFFFFFE : 0xFFFFFFFC;
jit->Regs() = interp_state.Reg;
jit->Cpsr() = interp_state.Cpsr;
}
static void Fail() {
FAIL();
}
static Dynarmic::UserCallbacks GetUserCallbacks() {
Dynarmic::UserCallbacks user_callbacks{};
user_callbacks.InterpreterFallback = &InterpreterFallback;
user_callbacks.CallSVC = (bool (*)(u32)) &Fail;
user_callbacks.IsReadOnlyMemory = &IsReadOnlyMemory;
user_callbacks.MemoryRead8 = &MemoryRead8;
user_callbacks.MemoryRead16 = &MemoryRead16;
user_callbacks.MemoryRead32 = &MemoryRead32;
user_callbacks.MemoryRead64 = &MemoryRead64;
user_callbacks.MemoryWrite8 = &MemoryWrite8;
user_callbacks.MemoryWrite16 = &MemoryWrite16;
user_callbacks.MemoryWrite32 = &MemoryWrite32;
user_callbacks.MemoryWrite64 = &MemoryWrite64;
return user_callbacks;
}
struct InstructionGenerator final {
public:
InstructionGenerator(const char* format, std::function<bool(u32)> is_valid = [](u32){ return true; }) : is_valid(is_valid) {
REQUIRE(strlen(format) == 32);
for (int i = 0; i < 32; i++) {
const u32 bit = 1 << (31 - i);
switch (format[i]) {
case '0':
mask |= bit;
break;
case '1':
bits |= bit;
mask |= bit;
break;
default:
// Do nothing
break;
}
}
}
u32 Generate() const {
u32 inst;
do {
u32 random = RandInt<u32>(0, 0xFFFF);
inst = bits | (random & ~mask);
} while (!is_valid(inst));
return inst;
}
u32 Bits() { return bits; }
u32 Mask() { return mask; }
private:
u32 bits = 0;
u32 mask = 0;
std::function<bool(u32)> is_valid;
};
static bool DoesBehaviorMatch(const ARMul_State& interp, const Dynarmic::Jit& jit, const std::vector<WriteRecord>& interp_write_records, const std::vector<WriteRecord>& jit_write_records) {
const auto interp_regs = interp.Reg;
const auto jit_regs = jit.Regs();
return std::equal(interp_regs.begin(), interp_regs.end(), jit_regs.begin(), jit_regs.end())
&& interp.Cpsr == jit.Cpsr()
&& interp_write_records == jit_write_records;
}
void FuzzJitArm(const size_t instruction_count, const size_t instructions_to_execute_count, const size_t run_count, const std::function<u32()> instruction_generator) {
// Prepare memory
code_mem.fill(0xEAFFFFFE); // b +#0
// Prepare test subjects
ARMul_State interp{USER32MODE};
interp.user_callbacks = GetUserCallbacks();
Dynarmic::Jit jit{GetUserCallbacks()};
for (size_t run_number = 0; run_number < run_count; run_number++) {
interp.instruction_cache.clear();
InterpreterClearCache();
jit.ClearCache(false);
// Setup initial state
std::array<u32, 16> initial_regs;
std::generate_n(initial_regs.begin(), 15, []{ return RandInt<u32>(0, 0xFFFFFFFF); });
initial_regs[15] = 0;
interp.Cpsr = 0x000001D0;
interp.Reg = initial_regs;
jit.Cpsr() = 0x000001D0;
jit.Regs() = initial_regs;
std::generate_n(code_mem.begin(), instruction_count, instruction_generator);
// Run interpreter
write_records.clear();
interp.NumInstrsToExecute = static_cast<unsigned>(instructions_to_execute_count);
InterpreterMainLoop(&interp);
auto interp_write_records = write_records;
{
bool T = Dynarmic::Common::Bit<5>(interp.Cpsr);
interp.Reg[15] &= T ? 0xFFFFFFFE : 0xFFFFFFFC;
}
// Run jit
write_records.clear();
jit.Run(static_cast<unsigned>(instructions_to_execute_count));
auto jit_write_records = write_records;
// Compare
if (!DoesBehaviorMatch(interp, jit, interp_write_records, jit_write_records)) {
printf("Failed at execution number %zu\n", run_number);
printf("\nInstruction Listing: \n");
for (size_t i = 0; i < instruction_count; i++) {
printf("%s\n", Dynarmic::Arm::DisassembleArm(code_mem[i]).c_str());
}
printf("\nInitial Register Listing: \n");
for (int i = 0; i <= 15; i++) {
printf("%4i: %08x\n", i, initial_regs[i]);
}
printf("\nFinal Register Listing: \n");
printf(" interp jit\n");
for (int i = 0; i <= 15; i++) {
printf("%4i: %08x %08x %s\n", i, interp.Reg[i], jit.Regs()[i], interp.Reg[i] != jit.Regs()[i] ? "*" : "");
}
printf("CPSR: %08x %08x %s\n", interp.Cpsr, jit.Cpsr(), interp.Cpsr != jit.Cpsr() ? "*" : "");
#ifdef _MSC_VER
__debugbreak();
#endif
FAIL();
}
if (run_number % 10 == 0) printf("%zu\r", run_number);
}
}
TEST_CASE( "arm: Optimization Failure (Randomized test case)", "[arm]" ) {
// This was a randomized test-case that was failing.
//
// IR produced for location {12, !T, !E} was:
// %0 = GetRegister r1
// %1 = SubWithCarry %0, #0x3e80000, #1
// %2 = GetCarryFromOp %1
// %3 = GetOverflowFromOp %1
// %4 = MostSignificantBit %1
// SetNFlag %4
// %6 = IsZero %1
// SetZFlag %6
// SetCFlag %2
// SetVFlag %3
// %10 = GetRegister r5
// %11 = AddWithCarry %10, #0x8a00, %2
// SetRegister r4, %11
//
// The reference to %2 in instruction %11 was the issue, because instruction %8
// told the register allocator it was a Use but then modified the value.
// Changing the EmitSet*Flag instruction to declare their arguments as UseScratch
// solved this bug.
Dynarmic::Jit jit{GetUserCallbacks()};
code_mem.fill({});
code_mem[0] = 0xe35f0cd9; // cmp pc, #55552
code_mem[1] = 0xe11c0474; // tst r12, r4, ror r4
code_mem[2] = 0xe1a006a7; // mov r0, r7, lsr #13
code_mem[3] = 0xe35107fa; // cmp r1, #0x3E80000
code_mem[4] = 0xe2a54c8a; // adc r4, r5, #35328
code_mem[5] = 0xeafffffe; // b +#0
jit.Regs() = {
0x6973b6bb, 0x267ea626, 0x69debf49, 0x8f976895, 0x4ecd2d0d, 0xcf89b8c7, 0xb6713f85, 0x15e2aa5,
0xcd14336a, 0xafca0f3e, 0xace2efd9, 0x68fb82cd, 0x775447c0, 0xc9e1f8cd, 0xebe0e626, 0x0
};
jit.Cpsr() = 0x000001d0; // User-mode
jit.Run(6);
REQUIRE( jit.Regs()[0] == 0x00000af1 );
REQUIRE( jit.Regs()[1] == 0x267ea626 );
REQUIRE( jit.Regs()[2] == 0x69debf49 );
REQUIRE( jit.Regs()[3] == 0x8f976895 );
REQUIRE( jit.Regs()[4] == 0xcf8a42c8 );
REQUIRE( jit.Regs()[5] == 0xcf89b8c7 );
REQUIRE( jit.Regs()[6] == 0xb6713f85 );
REQUIRE( jit.Regs()[7] == 0x015e2aa5 );
REQUIRE( jit.Regs()[8] == 0xcd14336a );
REQUIRE( jit.Regs()[9] == 0xafca0f3e );
REQUIRE( jit.Regs()[10] == 0xace2efd9 );
REQUIRE( jit.Regs()[11] == 0x68fb82cd );
REQUIRE( jit.Regs()[12] == 0x775447c0 );
REQUIRE( jit.Regs()[13] == 0xc9e1f8cd );
REQUIRE( jit.Regs()[14] == 0xebe0e626 );
REQUIRE( jit.Regs()[15] == 0x00000014 );
REQUIRE( jit.Cpsr() == 0x200001d0 );
}
TEST_CASE("Fuzz ARM data processing instructions", "[JitX64]") {
const std::array<InstructionGenerator, 16> imm_instructions = {
{
InstructionGenerator("cccc0010101Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0010100Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0010000Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0011110Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc00110111nnnn0000rrrrvvvvvvvv"),
InstructionGenerator("cccc00110101nnnn0000rrrrvvvvvvvv"),
InstructionGenerator("cccc0010001Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0011101S0000ddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0011111S0000ddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0011100Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0010011Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0010111Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0010110Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc0010010Snnnnddddrrrrvvvvvvvv"),
InstructionGenerator("cccc00110011nnnn0000rrrrvvvvvvvv"),
InstructionGenerator("cccc00110001nnnn0000rrrrvvvvvvvv"),
}
};
const std::array<InstructionGenerator, 16> reg_instructions = {
{
InstructionGenerator("cccc0000101Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0000100Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0000000Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0001110Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc00010111nnnn0000vvvvvrr0mmmm"),
InstructionGenerator("cccc00010101nnnn0000vvvvvrr0mmmm"),
InstructionGenerator("cccc0000001Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0001101S0000ddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0001111S0000ddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0001100Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0000011Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0000111Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0000110Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc0000010Snnnnddddvvvvvrr0mmmm"),
InstructionGenerator("cccc00010011nnnn0000vvvvvrr0mmmm"),
InstructionGenerator("cccc00010001nnnn0000vvvvvrr0mmmm"),
}
};
const std::array<InstructionGenerator, 16> rsr_instructions = {
{
InstructionGenerator("cccc0000101Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0000100Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0000000Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0001110Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc00010111nnnn0000ssss0rr1mmmm"),
InstructionGenerator("cccc00010101nnnn0000ssss0rr1mmmm"),
InstructionGenerator("cccc0000001Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0001101S0000ddddssss0rr1mmmm"),
InstructionGenerator("cccc0001111S0000ddddssss0rr1mmmm"),
InstructionGenerator("cccc0001100Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0000011Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0000111Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0000110Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc0000010Snnnnddddssss0rr1mmmm"),
InstructionGenerator("cccc00010011nnnn0000ssss0rr1mmmm"),
InstructionGenerator("cccc00010001nnnn0000ssss0rr1mmmm"),
}
};
auto instruction_select = [&](bool Rd_can_be_r15) -> auto {
return [&, Rd_can_be_r15]() -> u32 {
size_t instruction_set = RandInt<size_t>(0, 2);
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
u32 S = RandInt<u32>(0, 1);
switch (instruction_set) {
case 0: {
InstructionGenerator instruction = imm_instructions[RandInt<size_t>(0, imm_instructions.size() - 1)];
u32 Rd = RandInt<u32>(0, Rd_can_be_r15 ? 15 : 14);
if (Rd == 15) S = false;
u32 Rn = RandInt<u32>(0, 15);
u32 shifter_operand = RandInt<u32>(0, 0xFFF);
u32 assemble_randoms = (shifter_operand << 0) | (Rd << 12) | (Rn << 16) | (S << 20) | (cond << 28);
return instruction.Bits() | (assemble_randoms & ~instruction.Mask());
}
case 1: {
InstructionGenerator instruction = reg_instructions[RandInt<size_t>(0, reg_instructions.size() - 1)];
u32 Rd = RandInt<u32>(0, Rd_can_be_r15 ? 15 : 14);
if (Rd == 15) S = false;
u32 Rn = RandInt<u32>(0, 15);
u32 shifter_operand = RandInt<u32>(0, 0xFFF);
u32 assemble_randoms =
(shifter_operand << 0) | (Rd << 12) | (Rn << 16) | (S << 20) | (cond << 28);
return instruction.Bits() | (assemble_randoms & ~instruction.Mask());
}
case 2: {
InstructionGenerator instruction = rsr_instructions[RandInt<size_t>(0, rsr_instructions.size() - 1)];
u32 Rd = RandInt<u32>(0, 14); // Rd can never be 15.
u32 Rn = RandInt<u32>(0, 14);
u32 Rs = RandInt<u32>(0, 14);
int rotate = RandInt<int>(0, 3);
u32 Rm = RandInt<u32>(0, 14);
u32 assemble_randoms =
(Rm << 0) | (rotate << 5) | (Rs << 8) | (Rd << 12) | (Rn << 16) | (S << 20) | (cond << 28);
return instruction.Bits() | (assemble_randoms & ~instruction.Mask());
}
}
return 0;
};
};
SECTION("single instructions") {
FuzzJitArm(1, 2, 10000, instruction_select(/*Rd_can_be_r15=*/false));
}
SECTION("short blocks") {
FuzzJitArm(5, 6, 10000, instruction_select(/*Rd_can_be_r15=*/false));
}
SECTION("long blocks") {
FuzzJitArm(1024, 1025, 200, instruction_select(/*Rd_can_be_r15=*/false));
}
SECTION("R15") {
FuzzJitArm(1, 1, 10000, instruction_select(/*Rd_can_be_r15=*/true));
}
}
TEST_CASE("Fuzz ARM reversal instructions", "[JitX64]") {
const auto is_valid = [](u32 instr) -> bool {
// R15 is UNPREDICTABLE
return Dynarmic::Common::Bits<0, 3>(instr) != 0b1111 && Dynarmic::Common::Bits<12, 15>(instr) != 0b1111;
};
const std::array<InstructionGenerator, 3> rev_instructions = {
{
InstructionGenerator("0000011010111111dddd11110011mmmm", is_valid),
InstructionGenerator("0000011010111111dddd11111011mmmm", is_valid),
InstructionGenerator("0000011011111111dddd11111011mmmm", is_valid),
}
};
SECTION("REV tests") {
FuzzJitArm(1, 1, 10000, [&rev_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return rev_instructions[0].Generate() | (cond << 28);
});
}
SECTION("REV16 tests") {
FuzzJitArm(1, 1, 10000, [&rev_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return rev_instructions[1].Generate() | (cond << 28);
});
}
SECTION("REVSH tests") {
FuzzJitArm(1, 1, 10000, [&rev_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return rev_instructions[2].Generate() | (cond << 28);
});
}
}
TEST_CASE("Fuzz ARM Load/Store instructions", "[JitX64]") {
auto forbid_r15 = [](u32 inst) -> bool {
return Dynarmic::Common::Bits<12, 15>(inst) != 0b1111;
};
auto forbid_r14_and_r15 = [](u32 inst) -> bool {
return Dynarmic::Common::Bits<13, 15>(inst) != 0b111;
};
const std::array<InstructionGenerator, 4> doubleword_instructions = {
{
// Load
InstructionGenerator("0000000pu1w0nnnnddd0vvvv1101vvvv", forbid_r14_and_r15),
InstructionGenerator("0000000pu0w0nnnnddd000001101mmmm", forbid_r14_and_r15),
// Store
InstructionGenerator("0000000pu1w0nnnnddd0vvvv1111vvvv", forbid_r14_and_r15),
InstructionGenerator("0000000pu0w0nnnnddd000001111mmmm", forbid_r14_and_r15),
}
};
const std::array<InstructionGenerator, 8> word_instructions = {
{
// Load
InstructionGenerator("0000010pu0w1nnnnddddvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("0000011pu0w1nnnnddddvvvvvrr0mmmm", forbid_r15),
InstructionGenerator("00000100u011nnnnttttmmmmmmmmmmmm", forbid_r15),
InstructionGenerator("00000110u011nnnnttttvvvvvrr0mmmm", forbid_r15),
// Store
InstructionGenerator("0000010pu0w0nnnnddddvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("0000011pu0w0nnnnddddvvvvvrr0mmmm", forbid_r15),
InstructionGenerator("00000100u010nnnnttttvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("00000110u010nnnnttttvvvvvrr0mmmm", forbid_r15),
}
};
const std::array<InstructionGenerator, 6> halfword_instructions = {
{
// Load
InstructionGenerator("0000000pu1w1nnnnddddvvvv1011vvvv", forbid_r15),
InstructionGenerator("0000000pu0w1nnnndddd00001011mmmm", forbid_r15),
// InstructionGenerator("----0000-111------------1011----"), // LDRHT (A1) Not available in ARMv6K
// InstructionGenerator("----0000-011--------00001011----"), // LDRHT (A2) Not available in ARMv6K
InstructionGenerator("0000000pu1w1nnnnddddvvvv1111vvvv", forbid_r15),
InstructionGenerator("0000000pu0w1nnnndddd00001111mmmm", forbid_r15),
// InstructionGenerator("----0000-111------------1111----"), // LDRSHT (A1) Not available in ARMv6K
// InstructionGenerator("----0000-011--------00001111----"), // LDRSHT (A2) Not available in ARMv6K
// Store
InstructionGenerator("0000000pu1w0nnnnddddvvvv1011vvvv", forbid_r15),
InstructionGenerator("0000000pu0w0nnnndddd00001011mmmm", forbid_r15),
// InstructionGenerator("----0000-110------------1011----"), // STRHT (A1) Not available in ARMv6K
// InstructionGenerator("----0000-010--------00001011----"), // STRHT (A2) Not available in ARMv6K
}
};
const std::array<InstructionGenerator, 10> byte_instructions = {
{
// Load
InstructionGenerator("0000010pu1w1nnnnddddvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("0000011pu1w1nnnnddddvvvvvrr0mmmm", forbid_r15),
InstructionGenerator("00000100u111nnnnttttvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("00000110u111nnnnttttvvvvvrr0mmmm", forbid_r15),
InstructionGenerator("0000000pu1w1nnnnddddvvvv1101vvvv", forbid_r15),
InstructionGenerator("0000000pu0w1nnnndddd00001101mmmm", forbid_r15),
// InstructionGenerator("----0000-111------------1101----"), // LDRSBT (A1) Not available in ARMv6K
// InstructionGenerator("----0000-011--------00001101----"), // LDRSBT (A2) Not available in ARMv6K
// Store
InstructionGenerator("0000010pu1w0nnnnddddvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("0000011pu1w0nnnnddddvvvvvrr0mmmm", forbid_r15),
InstructionGenerator("00000100u110nnnnttttvvvvvvvvvvvv", forbid_r15),
InstructionGenerator("00000110u110nnnnttttvvvvvrr0mmmm", forbid_r15),
}
};
SECTION("Doubleword tests") {
FuzzJitArm(1, 1, 10000, [&doubleword_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return doubleword_instructions[RandInt<size_t>(0, doubleword_instructions.size() - 1)].Generate() | (cond << 28);
});
}
SECTION("Word tests") {
FuzzJitArm(1, 1, 10000, [&word_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return word_instructions[RandInt<size_t>(0, word_instructions.size() - 1)].Generate() | (cond << 28);
});
}
SECTION("Halfword tests") {
FuzzJitArm(1, 1, 10000, [&halfword_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return halfword_instructions[RandInt<size_t>(0, halfword_instructions.size() - 1)].Generate() | (cond << 28);
});
}
SECTION("Byte tests") {
FuzzJitArm(1, 1, 10000, [&byte_instructions]() -> u32 {
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
return byte_instructions[RandInt<size_t>(0, byte_instructions.size() - 1)].Generate() | (cond << 28);
});
}
SECTION("Mixed tests") {
FuzzJitArm(10, 10, 10000, [&]() -> u32 {
size_t selection = RandInt<size_t>(0, 3);
u32 cond = 0xE;
// Have a one-in-twenty-five chance of actually having a cond.
if (RandInt(1, 25) == 1) {
cond = RandInt<u32>(0x0, 0xD);
}
switch (selection) {
case 0:
return doubleword_instructions[RandInt<size_t>(0, doubleword_instructions.size() - 1)].Generate() | (cond << 28);
case 1:
return word_instructions[RandInt<size_t>(0, word_instructions.size() - 1)].Generate() | (cond << 28);
case 2:
return halfword_instructions[RandInt<size_t>(0, halfword_instructions.size() - 1)].Generate() | (cond << 28);
case 3:
return byte_instructions[RandInt<size_t>(0, byte_instructions.size() - 1)].Generate() | (cond << 28);
}
return 0;
});
}
SECTION("Write to PC") {
// TODO
FAIL();
}
}