422 lines
15 KiB
C++
422 lines
15 KiB
C++
/* This file is part of the dynarmic project.
|
|
* Copyright (c) 2018 MerryMage
|
|
* This software may be used and distributed according to the terms of the GNU
|
|
* General Public License version 2 or any later version.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <catch.hpp>
|
|
|
|
#include "common/fp/fpsr.h"
|
|
#include "common/llvm_disassemble.h"
|
|
#include "common/scope_exit.h"
|
|
#include "frontend/A64/decoder/a64.h"
|
|
#include "frontend/A64/location_descriptor.h"
|
|
#include "frontend/A64/translate/translate.h"
|
|
#include "frontend/ir/basic_block.h"
|
|
#include "frontend/ir/opcodes.h"
|
|
#include "inst_gen.h"
|
|
#include "rand_int.h"
|
|
#include "testenv.h"
|
|
#include "unicorn_emu/unicorn.h"
|
|
|
|
// Needs to be declaerd before <fmt/ostream.h>
|
|
static std::ostream& operator<<(std::ostream& o, const Dynarmic::A64::Vector& vec) {
|
|
return o << fmt::format("{:016x}'{:016x}", vec[1], vec[0]);
|
|
}
|
|
|
|
#include <fmt/format.h>
|
|
#include <fmt/ostream.h>
|
|
|
|
using namespace Dynarmic;
|
|
|
|
static Vector RandomVector() {
|
|
return {RandInt<u64>(0, ~u64(0)), RandInt<u64>(0, ~u64(0))};
|
|
}
|
|
|
|
static bool ShouldTestInst(u32 instruction, u64 pc, bool is_last_inst) {
|
|
const A64::LocationDescriptor location{pc, {}};
|
|
IR::Block block{location};
|
|
bool should_continue = A64::TranslateSingleInstruction(block, location, instruction);
|
|
if (!should_continue && !is_last_inst)
|
|
return false;
|
|
if (auto terminal = block.GetTerminal(); boost::get<IR::Term::Interpret>(&terminal))
|
|
return false;
|
|
for (const auto& ir_inst : block) {
|
|
switch (ir_inst.GetOpcode()) {
|
|
case IR::Opcode::A64ExceptionRaised:
|
|
case IR::Opcode::A64CallSupervisor:
|
|
case IR::Opcode::A64DataCacheOperationRaised:
|
|
case IR::Opcode::A64GetCNTPCT:
|
|
return false;
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static u32 GenRandomInst(u64 pc, bool is_last_inst) {
|
|
static const std::vector<InstructionGenerator> instruction_generators = []{
|
|
const std::vector<std::tuple<std::string, const char*>> list {
|
|
#define INST(fn, name, bitstring) {#fn, bitstring},
|
|
#include "frontend/A64/decoder/a64.inc"
|
|
#undef INST
|
|
};
|
|
|
|
std::vector<InstructionGenerator> result;
|
|
|
|
// List of instructions not to test
|
|
const std::vector<std::string> do_not_test {
|
|
// Unimplemented in QEMU
|
|
"STLLR",
|
|
// Unimplemented in QEMU
|
|
"LDLAR",
|
|
// Dynarmic and QEMU currently differ on how the exclusive monitor's address range works.
|
|
"STXR", "STLXR", "STXP", "STLXP", "LDXR", "LDAXR", "LDXP", "LDAXP",
|
|
};
|
|
|
|
for (const auto& [fn, bitstring] : list) {
|
|
if (fn == "UnallocatedEncoding") {
|
|
continue;
|
|
}
|
|
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
|
|
InstructionGenerator::AddInvalidInstruction(bitstring);
|
|
continue;
|
|
}
|
|
result.emplace_back(InstructionGenerator{bitstring});
|
|
}
|
|
return result;
|
|
}();
|
|
|
|
while (true) {
|
|
const size_t index = RandInt<size_t>(0, instruction_generators.size() - 1);
|
|
const u32 instruction = instruction_generators[index].Generate();
|
|
|
|
if (ShouldTestInst(instruction, pc, is_last_inst)) {
|
|
return instruction;
|
|
}
|
|
}
|
|
}
|
|
|
|
static u32 GenFloatInst(u64 pc, bool is_last_inst) {
|
|
static const std::vector<InstructionGenerator> instruction_generators = []{
|
|
const std::vector<std::tuple<std::string, std::string, const char*>> list {
|
|
#define INST(fn, name, bitstring) {#fn, #name, bitstring},
|
|
#include "frontend/A64/decoder/a64.inc"
|
|
#undef INST
|
|
};
|
|
|
|
// List of instructions not to test
|
|
const std::vector<std::string> do_not_test {
|
|
// QEMU's implementation of FCVT is incorrect
|
|
"FCVT_float",
|
|
// Requires investigation (temporarily disabled).
|
|
"FDIV_1", "FDIV_2",
|
|
};
|
|
|
|
std::vector<InstructionGenerator> result;
|
|
|
|
for (const auto& [fn, name, bitstring] : list) {
|
|
(void)name;
|
|
|
|
if (fn[0] != 'F') {
|
|
continue;
|
|
} else if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
|
|
continue;
|
|
}
|
|
result.emplace_back(InstructionGenerator{bitstring});
|
|
}
|
|
|
|
return result;
|
|
}();
|
|
|
|
while (true) {
|
|
const size_t index = RandInt<size_t>(0, instruction_generators.size() - 1);
|
|
const u32 instruction = instruction_generators[index].Generate();
|
|
|
|
if ((instruction & 0x00800000) == 0 && ShouldTestInst(instruction, pc, is_last_inst)) {
|
|
return instruction;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void RunTestInstance(const Unicorn::RegisterArray& regs, const Unicorn::VectorArray& vecs, const size_t instructions_offset,
|
|
const std::vector<u32>& instructions, const u32 pstate, const u32 fpcr) {
|
|
static TestEnv jit_env{};
|
|
static TestEnv uni_env{};
|
|
|
|
std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + instructions_offset);
|
|
std::copy(instructions.begin(), instructions.end(), uni_env.code_mem.begin() + instructions_offset);
|
|
jit_env.code_mem[instructions.size() + instructions_offset] = 0x14000000; // B .
|
|
uni_env.code_mem[instructions.size() + instructions_offset] = 0x14000000; // B .
|
|
jit_env.modified_memory.clear();
|
|
uni_env.modified_memory.clear();
|
|
jit_env.interrupts.clear();
|
|
uni_env.interrupts.clear();
|
|
|
|
Dynarmic::A64::UserConfig jit_user_config{&jit_env};
|
|
// The below corresponds to the settings for qemu's aarch64_max_initfn
|
|
jit_user_config.dczid_el0 = 7;
|
|
jit_user_config.ctr_el0 = 0x80038003;
|
|
|
|
static Dynarmic::A64::Jit jit{jit_user_config};
|
|
static Unicorn uni{uni_env};
|
|
|
|
jit.SetRegisters(regs);
|
|
jit.SetVectors(vecs);
|
|
jit.SetPC(instructions_offset * 4);
|
|
jit.SetSP(0x08000000);
|
|
jit.SetFpcr(fpcr);
|
|
jit.SetFpsr(0);
|
|
jit.SetPstate(pstate);
|
|
jit.ClearCache();
|
|
uni.SetRegisters(regs);
|
|
uni.SetVectors(vecs);
|
|
uni.SetPC(instructions_offset * 4);
|
|
uni.SetSP(0x08000000);
|
|
uni.SetFpcr(fpcr);
|
|
uni.SetFpsr(0);
|
|
uni.SetPstate(pstate);
|
|
uni.ClearPageCache();
|
|
|
|
jit_env.ticks_left = instructions.size();
|
|
jit.Run();
|
|
|
|
uni_env.ticks_left = instructions.size();
|
|
uni.Run();
|
|
|
|
SCOPE_FAIL {
|
|
fmt::print("Instruction Listing:\n");
|
|
for (u32 instruction : instructions)
|
|
fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch64(instruction));
|
|
fmt::print("\n");
|
|
|
|
fmt::print("Initial register listing:\n");
|
|
for (size_t i = 0; i < regs.size(); ++i)
|
|
fmt::print("{:3s}: {:016x}\n", static_cast<A64::Reg>(i), regs[i]);
|
|
for (size_t i = 0; i < vecs.size(); ++i)
|
|
fmt::print("{:3s}: {}\n", static_cast<A64::Vec>(i), vecs[i]);
|
|
fmt::print("sp : 08000000\n");
|
|
fmt::print("pc : {:016x}\n", instructions_offset * 4);
|
|
fmt::print("p : {:08x}\n", pstate);
|
|
fmt::print("fpcr {:08x}\n", fpcr);
|
|
fmt::print("\n");
|
|
|
|
fmt::print("Final register listing:\n");
|
|
fmt::print(" unicorn dynarmic\n");
|
|
for (size_t i = 0; i < regs.size(); ++i)
|
|
fmt::print("{:3s}: {:016x} {:016x} {}\n", static_cast<A64::Reg>(i), uni.GetRegisters()[i], jit.GetRegisters()[i], uni.GetRegisters()[i] != jit.GetRegisters()[i] ? "*" : "");
|
|
for (size_t i = 0; i < vecs.size(); ++i)
|
|
fmt::print("{:3s}: {} {} {}\n", static_cast<A64::Vec>(i), uni.GetVectors()[i], jit.GetVectors()[i], uni.GetVectors()[i] != jit.GetVectors()[i] ? "*" : "");
|
|
fmt::print("sp : {:016x} {:016x} {}\n", uni.GetSP(), jit.GetSP(), uni.GetSP() != jit.GetSP() ? "*" : "");
|
|
fmt::print("pc : {:016x} {:016x} {}\n", uni.GetPC(), jit.GetPC(), uni.GetPC() != jit.GetPC() ? "*" : "");
|
|
fmt::print("p : {:08x} {:08x} {}\n", uni.GetPstate(), jit.GetPstate(), (uni.GetPstate() & 0xF0000000) != (jit.GetPstate() & 0xF0000000) ? "*" : "");
|
|
fmt::print("qc : {:08x} {:08x} {}\n", uni.GetFpsr(), jit.GetFpsr(), FP::FPSR{uni.GetFpsr()}.QC() != FP::FPSR{jit.GetFpsr()}.QC() ? "*" : "");
|
|
fmt::print("\n");
|
|
|
|
fmt::print("Modified memory:\n");
|
|
fmt::print(" uni dyn\n");
|
|
auto uni_iter = uni_env.modified_memory.begin();
|
|
auto jit_iter = jit_env.modified_memory.begin();
|
|
while (uni_iter != uni_env.modified_memory.end() || jit_iter != jit_env.modified_memory.end()) {
|
|
if (uni_iter == uni_env.modified_memory.end() || (jit_iter != jit_env.modified_memory.end() && uni_iter->first > jit_iter->first)) {
|
|
fmt::print("{:016x}: {:02x} *\n", jit_iter->first, jit_iter->second);
|
|
jit_iter++;
|
|
} else if (jit_iter == jit_env.modified_memory.end() || jit_iter->first > uni_iter->first) {
|
|
fmt::print("{:016x}: {:02x} *\n", uni_iter->first, uni_iter->second);
|
|
uni_iter++;
|
|
} else if (uni_iter->first == jit_iter->first) {
|
|
fmt::print("{:016x}: {:02x} {:02x} {}\n", uni_iter->first, uni_iter->second, jit_iter->second, uni_iter->second != jit_iter->second ? "*" : "");
|
|
uni_iter++;
|
|
jit_iter++;
|
|
}
|
|
}
|
|
fmt::print("\n");
|
|
|
|
fmt::print("x86_64:\n");
|
|
fmt::print("{}\n", jit.Disassemble());
|
|
|
|
fmt::print("Interrupts:\n");
|
|
for (auto& i : uni_env.interrupts) {
|
|
puts(i.c_str());
|
|
}
|
|
};
|
|
|
|
REQUIRE(uni_env.code_mem_modified_by_guest == jit_env.code_mem_modified_by_guest);
|
|
if (uni_env.code_mem_modified_by_guest) {
|
|
return;
|
|
}
|
|
|
|
REQUIRE(uni.GetPC() == jit.GetPC());
|
|
REQUIRE(uni.GetRegisters() == jit.GetRegisters());
|
|
REQUIRE(uni.GetVectors() == jit.GetVectors());
|
|
REQUIRE(uni.GetSP() == jit.GetSP());
|
|
REQUIRE((uni.GetPstate() & 0xF0000000) == (jit.GetPstate() & 0xF0000000));
|
|
REQUIRE(uni_env.modified_memory == jit_env.modified_memory);
|
|
REQUIRE(uni_env.interrupts.empty());
|
|
REQUIRE(FP::FPSR{uni.GetFpsr()}.QC() == FP::FPSR{jit.GetFpsr()}.QC());
|
|
}
|
|
|
|
TEST_CASE("A64: Single random instruction", "[a64]") {
|
|
Unicorn::RegisterArray regs;
|
|
Unicorn::VectorArray vecs;
|
|
std::vector<u32> instructions(1);
|
|
|
|
for (size_t iteration = 0; iteration < 100000; ++iteration) {
|
|
std::generate(regs.begin(), regs.end(), []{ return RandInt<u64>(0, ~u64(0)); });
|
|
std::generate(vecs.begin(), vecs.end(), RandomVector);
|
|
instructions[0] = GenRandomInst(0, true);
|
|
u32 pstate = RandInt<u32>(0, 0xF) << 28;
|
|
u32 fpcr = RandInt<u32>(0, 0x3) << 22; // randomize RMode
|
|
|
|
INFO("Instruction: 0x" << std::hex << instructions[0]);
|
|
|
|
RunTestInstance(regs, vecs, 100, instructions, pstate, fpcr);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("A64: Floating point instructions", "[a64]") {
|
|
static constexpr std::array<u64, 80> float_numbers {
|
|
0x00000000, // positive zero
|
|
0x00000001, // smallest positive denormal
|
|
0x00000076, //
|
|
0x00002b94, //
|
|
0x00636d24, //
|
|
0x007fffff, // largest positive denormal
|
|
0x00800000, // smallest positive normalised real
|
|
0x00800002, //
|
|
0x01398437, //
|
|
0x0ba98d27, //
|
|
0x0ba98d7a, //
|
|
0x751f853a, //
|
|
0x7f7ffff0, //
|
|
0x7f7fffff, // largest positive normalised real
|
|
0x7f800000, // positive infinity
|
|
0x7f800001, // first positive SNaN
|
|
0x7f984a37, //
|
|
0x7fbfffff, // last positive SNaN
|
|
0x7fc00000, // first positive QNaN
|
|
0x7fd9ba98, //
|
|
0x7fffffff, // last positive QNaN
|
|
0x80000000, // negative zero
|
|
0x80000001, // smallest negative denormal
|
|
0x80000076, //
|
|
0x80002b94, //
|
|
0x80636d24, //
|
|
0x807fffff, // largest negative denormal
|
|
0x80800000, // smallest negative normalised real
|
|
0x80800002, //
|
|
0x81398437, //
|
|
0x8ba98d27, //
|
|
0x8ba98d7a, //
|
|
0xf51f853a, //
|
|
0xff7ffff0, //
|
|
0xff7fffff, // largest negative normalised real
|
|
0xff800000, // negative infinity
|
|
0xff800001, // first negative SNaN
|
|
0xff984a37, //
|
|
0xffbfffff, // last negative SNaN
|
|
0xffc00000, // first negative QNaN
|
|
0xffd9ba98, //
|
|
0xffffffff, // last negative QNaN
|
|
// some random numbers follow
|
|
0x4f3495cb,
|
|
0xe73a5134,
|
|
0x7c994e9e,
|
|
0x6164bd6c,
|
|
0x09503366,
|
|
0xbf5a97c9,
|
|
0xe6ff1a14,
|
|
0x77f31e2f,
|
|
0xaab4d7d8,
|
|
0x0966320b,
|
|
0xb26bddee,
|
|
0xb5c8e5d3,
|
|
0x317285d3,
|
|
0x3c9623b1,
|
|
0x51fd2c7c,
|
|
0x7b906a6c,
|
|
0x3f800000,
|
|
0x3dcccccd,
|
|
0x3f000000,
|
|
0x42280000,
|
|
0x3eaaaaab,
|
|
0xc1200000,
|
|
0xbf800000,
|
|
0xbf8147ae,
|
|
0x3f8147ae,
|
|
0x415df525,
|
|
0xc79b271e,
|
|
0x460e8c84,
|
|
// some 64-bit-float upper-halves
|
|
0x7ff00000, // +SNaN / +Inf
|
|
0x7ff0abcd, // +SNaN
|
|
0x7ff80000, // +QNaN
|
|
0x7ff81234, // +QNaN
|
|
0xfff00000, // -SNaN / -Inf
|
|
0xfff05678, // -SNaN
|
|
0xfff80000, // -QNaN
|
|
0xfff809ef, // -QNaN
|
|
0x3ff00000, // Number near +1.0
|
|
0xbff00000, // Number near -1.0
|
|
};
|
|
|
|
const auto gen_float = [&]{
|
|
return float_numbers[RandInt<size_t>(0, float_numbers.size() - 1)];
|
|
};
|
|
|
|
const auto gen_vector = [&]{
|
|
u64 upper = (gen_float() << 32) | gen_float();
|
|
u64 lower = (gen_float() << 32) | gen_float();
|
|
return Vector{lower, upper};
|
|
};
|
|
|
|
Unicorn::RegisterArray regs;
|
|
Unicorn::VectorArray vecs;
|
|
std::vector<u32> instructions(1);
|
|
|
|
for (size_t iteration = 0; iteration < 100000; ++iteration) {
|
|
std::generate(regs.begin(), regs.end(), gen_float);
|
|
std::generate(vecs.begin(), vecs.end(), gen_vector);
|
|
instructions[0] = GenFloatInst(0, true);
|
|
u32 pstate = RandInt<u32>(0, 0xF) << 28;
|
|
u32 fpcr = RandInt<u32>(0, 0x3) << 22; // randomize RMode
|
|
|
|
INFO("Instruction: 0x" << std::hex << instructions[0]);
|
|
|
|
RunTestInstance(regs, vecs, 100, instructions, pstate, fpcr);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("A64: Small random block", "[a64]") {
|
|
Unicorn::RegisterArray regs;
|
|
Unicorn::VectorArray vecs;
|
|
std::vector<u32> instructions(5);
|
|
|
|
for (size_t iteration = 0; iteration < 100000; ++iteration) {
|
|
std::generate(regs.begin(), regs.end(), [] { return RandInt<u64>(0, ~u64(0)); });
|
|
std::generate(vecs.begin(), vecs.end(), RandomVector);
|
|
|
|
instructions[0] = GenRandomInst(0, false);
|
|
instructions[1] = GenRandomInst(4, false);
|
|
instructions[2] = GenRandomInst(8, false);
|
|
instructions[3] = GenRandomInst(12, false);
|
|
instructions[4] = GenRandomInst(16, true);
|
|
|
|
u32 pstate = RandInt<u32>(0, 0xF) << 28;
|
|
u32 fpcr = RandInt<u32>(0, 0x3) << 22; // randomize RMode
|
|
|
|
INFO("Instruction 1: 0x" << std::hex << instructions[0]);
|
|
INFO("Instruction 2: 0x" << std::hex << instructions[1]);
|
|
INFO("Instruction 3: 0x" << std::hex << instructions[2]);
|
|
INFO("Instruction 4: 0x" << std::hex << instructions[3]);
|
|
INFO("Instruction 5: 0x" << std::hex << instructions[4]);
|
|
|
|
RunTestInstance(regs, vecs, 100, instructions, pstate, fpcr);
|
|
}
|
|
}
|