1ebc1895ee
Instead of looking up the page table like: table[addr >> 12][addr & 0xFFF] We can use a global offset on the table to query the memory like: table[addr >> 12][addr] This saves two instructions on *every* memory access within the recompiler. Original change by degasus in A64 emitter
1385 lines
52 KiB
C++
1385 lines
52 KiB
C++
/* This file is part of the dynarmic project.
|
|
* Copyright (c) 2016 MerryMage
|
|
* This software may be used and distributed according to the terms of the GNU
|
|
* General Public License version 2 or any later version.
|
|
*/
|
|
|
|
#include <optional>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
#include <fmt/format.h>
|
|
#include <fmt/ostream.h>
|
|
|
|
#include <dynarmic/A32/coprocessor.h>
|
|
|
|
#include "backend/x64/a32_emit_x64.h"
|
|
#include "backend/x64/a32_jitstate.h"
|
|
#include "backend/x64/abi.h"
|
|
#include "backend/x64/block_of_code.h"
|
|
#include "backend/x64/devirtualize.h"
|
|
#include "backend/x64/emit_x64.h"
|
|
#include "backend/x64/perf_map.h"
|
|
#include "common/assert.h"
|
|
#include "common/bit_util.h"
|
|
#include "common/common_types.h"
|
|
#include "common/scope_exit.h"
|
|
#include "common/variant_util.h"
|
|
#include "frontend/A32/location_descriptor.h"
|
|
#include "frontend/A32/types.h"
|
|
#include "frontend/ir/basic_block.h"
|
|
#include "frontend/ir/microinstruction.h"
|
|
#include "frontend/ir/opcodes.h"
|
|
|
|
// TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary.
|
|
// TODO: Actually implement that proper instruction selector you've always wanted to sweetheart.
|
|
|
|
namespace Dynarmic::BackendX64 {
|
|
|
|
using namespace Xbyak::util;
|
|
|
|
static Xbyak::Address MJitStateReg(A32::Reg reg) {
|
|
return dword[r15 + offsetof(A32JitState, Reg) + sizeof(u32) * static_cast<size_t>(reg)];
|
|
}
|
|
|
|
static Xbyak::Address MJitStateExtReg(A32::ExtReg reg) {
|
|
if (A32::IsSingleExtReg(reg)) {
|
|
const size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::S0);
|
|
return dword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u32) * index];
|
|
}
|
|
if (A32::IsDoubleExtReg(reg)) {
|
|
const size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::D0);
|
|
return qword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u64) * index];
|
|
}
|
|
ASSERT_MSG(false, "Should never happen.");
|
|
}
|
|
|
|
A32EmitContext::A32EmitContext(RegAlloc& reg_alloc, IR::Block& block)
|
|
: EmitContext(reg_alloc, block) {}
|
|
|
|
A32::LocationDescriptor A32EmitContext::Location() const {
|
|
return A32::LocationDescriptor{block.Location()};
|
|
}
|
|
|
|
FP::FPCR A32EmitContext::FPCR() const {
|
|
return FP::FPCR{Location().FPSCR().Value()};
|
|
}
|
|
|
|
A32EmitX64::A32EmitX64(BlockOfCode& code, A32::UserConfig config, A32::Jit* jit_interface)
|
|
: EmitX64(code), config(std::move(config)), jit_interface(jit_interface) {
|
|
GenMemoryAccessors();
|
|
GenTerminalHandlers();
|
|
code.PreludeComplete();
|
|
ClearFastDispatchTable();
|
|
}
|
|
|
|
A32EmitX64::~A32EmitX64() = default;
|
|
|
|
A32EmitX64::BlockDescriptor A32EmitX64::Emit(IR::Block& block) {
|
|
code.EnableWriting();
|
|
SCOPE_EXIT { code.DisableWriting(); };
|
|
|
|
code.align();
|
|
const u8* const entrypoint = code.getCurr();
|
|
|
|
// Start emitting.
|
|
EmitCondPrelude(block);
|
|
|
|
RegAlloc reg_alloc{code, A32JitState::SpillCount, SpillToOpArg<A32JitState>};
|
|
A32EmitContext ctx{reg_alloc, block};
|
|
|
|
for (auto iter = block.begin(); iter != block.end(); ++iter) {
|
|
IR::Inst* inst = &*iter;
|
|
|
|
// Call the relevant Emit* member function.
|
|
switch (inst->GetOpcode()) {
|
|
|
|
#define OPCODE(name, type, ...) \
|
|
case IR::Opcode::name: \
|
|
A32EmitX64::Emit##name(ctx, inst); \
|
|
break;
|
|
#define A32OPC(name, type, ...) \
|
|
case IR::Opcode::A32##name: \
|
|
A32EmitX64::EmitA32##name(ctx, inst); \
|
|
break;
|
|
#define A64OPC(...)
|
|
#include "frontend/ir/opcodes.inc"
|
|
#undef OPCODE
|
|
#undef A32OPC
|
|
#undef A64OPC
|
|
|
|
default:
|
|
ASSERT_MSG(false, "Invalid opcode: {}", inst->GetOpcode());
|
|
break;
|
|
}
|
|
|
|
reg_alloc.EndOfAllocScope();
|
|
}
|
|
|
|
reg_alloc.AssertNoMoreUses();
|
|
|
|
EmitAddCycles(block.CycleCount());
|
|
EmitX64::EmitTerminal(block.GetTerminal(), block.Location());
|
|
code.int3();
|
|
|
|
const size_t size = static_cast<size_t>(code.getCurr() - entrypoint);
|
|
|
|
const A32::LocationDescriptor descriptor{block.Location()};
|
|
const A32::LocationDescriptor end_location{block.EndLocation()};
|
|
|
|
const auto range = boost::icl::discrete_interval<u32>::closed(descriptor.PC(), end_location.PC() - 1);
|
|
block_ranges.AddRange(range, descriptor);
|
|
|
|
return RegisterBlock(descriptor, entrypoint, size);
|
|
}
|
|
|
|
void A32EmitX64::ClearCache() {
|
|
EmitX64::ClearCache();
|
|
block_ranges.ClearCache();
|
|
ClearFastDispatchTable();
|
|
}
|
|
|
|
void A32EmitX64::InvalidateCacheRanges(const boost::icl::interval_set<u32>& ranges) {
|
|
InvalidateBasicBlocks(block_ranges.InvalidateRanges(ranges));
|
|
ClearFastDispatchTable();
|
|
}
|
|
|
|
void A32EmitX64::ClearFastDispatchTable() {
|
|
if (config.enable_fast_dispatch) {
|
|
fast_dispatch_table.fill({0xFFFFFFFFFFFFFFFFull, nullptr});
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::GenMemoryAccessors() {
|
|
code.align();
|
|
read_memory_8 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryRead8>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(read_memory_8, code.getCurr(), "a32_read_memory_8");
|
|
|
|
code.align();
|
|
read_memory_16 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryRead16>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(read_memory_16, code.getCurr(), "a32_read_memory_16");
|
|
|
|
code.align();
|
|
read_memory_32 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryRead32>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(read_memory_32, code.getCurr(), "a32_read_memory_32");
|
|
|
|
code.align();
|
|
read_memory_64 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryRead64>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(read_memory_64, code.getCurr(), "a32_read_memory_64");
|
|
|
|
code.align();
|
|
write_memory_8 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryWrite8>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(write_memory_8, code.getCurr(), "a32_write_memory_8");
|
|
|
|
code.align();
|
|
write_memory_16 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryWrite16>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(write_memory_16, code.getCurr(), "a32_write_memory_16");
|
|
|
|
code.align();
|
|
write_memory_32 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryWrite32>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(write_memory_32, code.getCurr(), "a32_write_memory_32");
|
|
|
|
code.align();
|
|
write_memory_64 = code.getCurr<const void*>();
|
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
Devirtualize<&A32::UserCallbacks::MemoryWrite64>(config.callbacks).EmitCall(code);
|
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
|
|
code.ret();
|
|
PerfMapRegister(write_memory_64, code.getCurr(), "a32_write_memory_64");
|
|
}
|
|
|
|
void A32EmitX64::GenTerminalHandlers() {
|
|
// PC ends up in ebp, location_descriptor ends up in rbx
|
|
const auto calculate_location_descriptor = [this] {
|
|
// This calculation has to match up with IREmitter::PushRSB
|
|
code.mov(ebx, dword[r15 + offsetof(A32JitState, upper_location_descriptor)]);
|
|
code.shl(rbx, 32);
|
|
code.mov(ecx, MJitStateReg(A32::Reg::PC));
|
|
code.mov(ebp, ecx);
|
|
code.or_(rbx, rcx);
|
|
};
|
|
|
|
Xbyak::Label fast_dispatch_cache_miss, rsb_cache_miss;
|
|
|
|
code.align();
|
|
terminal_handler_pop_rsb_hint = code.getCurr<const void*>();
|
|
calculate_location_descriptor();
|
|
code.mov(eax, dword[r15 + offsetof(A32JitState, rsb_ptr)]);
|
|
code.sub(eax, 1);
|
|
code.and_(eax, u32(A32JitState::RSBPtrMask));
|
|
code.mov(dword[r15 + offsetof(A32JitState, rsb_ptr)], eax);
|
|
code.cmp(rbx, qword[r15 + offsetof(A32JitState, rsb_location_descriptors) + rax * sizeof(u64)]);
|
|
if (config.enable_fast_dispatch) {
|
|
code.jne(rsb_cache_miss);
|
|
} else {
|
|
code.jne(code.GetReturnFromRunCodeAddress());
|
|
}
|
|
code.mov(rax, qword[r15 + offsetof(A32JitState, rsb_codeptrs) + rax * sizeof(u64)]);
|
|
code.jmp(rax);
|
|
PerfMapRegister(terminal_handler_pop_rsb_hint, code.getCurr(), "a32_terminal_handler_pop_rsb_hint");
|
|
|
|
if (config.enable_fast_dispatch) {
|
|
code.align();
|
|
terminal_handler_fast_dispatch_hint = code.getCurr<const void*>();
|
|
calculate_location_descriptor();
|
|
code.L(rsb_cache_miss);
|
|
code.mov(r12, reinterpret_cast<u64>(fast_dispatch_table.data()));
|
|
if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE42)) {
|
|
code.crc32(ebp, r12d);
|
|
}
|
|
code.and_(ebp, fast_dispatch_table_mask);
|
|
code.lea(rbp, ptr[r12 + rbp]);
|
|
code.cmp(rbx, qword[rbp + offsetof(FastDispatchEntry, location_descriptor)]);
|
|
code.jne(fast_dispatch_cache_miss);
|
|
code.jmp(ptr[rbp + offsetof(FastDispatchEntry, code_ptr)]);
|
|
code.L(fast_dispatch_cache_miss);
|
|
code.mov(qword[rbp + offsetof(FastDispatchEntry, location_descriptor)], rbx);
|
|
code.LookupBlock();
|
|
code.mov(ptr[rbp + offsetof(FastDispatchEntry, code_ptr)], rax);
|
|
code.jmp(rax);
|
|
PerfMapRegister(terminal_handler_fast_dispatch_hint, code.getCurr(), "a32_terminal_handler_fast_dispatch_hint");
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetRegister(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const A32::Reg reg = inst->GetArg(0).GetA32RegRef();
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
|
|
code.mov(result, MJitStateReg(reg));
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
|
|
ASSERT(A32::IsSingleExtReg(reg));
|
|
|
|
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
|
code.movss(result, MJitStateExtReg(reg));
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
|
|
ASSERT(A32::IsDoubleExtReg(reg));
|
|
|
|
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
|
code.movsd(result, MJitStateExtReg(reg));
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetRegister(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
const A32::Reg reg = inst->GetArg(0).GetA32RegRef();
|
|
|
|
if (args[1].IsImmediate()) {
|
|
code.mov(MJitStateReg(reg), args[1].GetImmediateU32());
|
|
} else if (args[1].IsInXmm()) {
|
|
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
|
|
code.movd(MJitStateReg(reg), to_store);
|
|
} else {
|
|
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32();
|
|
code.mov(MJitStateReg(reg), to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
|
|
ASSERT(A32::IsSingleExtReg(reg));
|
|
|
|
if (args[1].IsInXmm()) {
|
|
Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
|
|
code.movss(MJitStateExtReg(reg), to_store);
|
|
} else {
|
|
Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32();
|
|
code.mov(MJitStateExtReg(reg), to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
|
|
ASSERT(A32::IsDoubleExtReg(reg));
|
|
|
|
if (args[1].IsInXmm()) {
|
|
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
|
|
code.movsd(MJitStateExtReg(reg), to_store);
|
|
} else {
|
|
const Xbyak::Reg64 to_store = ctx.reg_alloc.UseGpr(args[1]);
|
|
code.mov(MJitStateExtReg(reg), to_store);
|
|
}
|
|
}
|
|
|
|
static u32 GetCpsrImpl(A32JitState* jit_state) {
|
|
return jit_state->Cpsr();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
|
|
if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
|
|
// Here we observe that cpsr_et and cpsr_ge are right next to each other in memory,
|
|
// so we load them both at the same time with one 64-bit read. This allows us to
|
|
// extract all of their bits together at once with one pext.
|
|
static_assert(offsetof(A32JitState, upper_location_descriptor) + 4 == offsetof(A32JitState, cpsr_ge));
|
|
code.mov(result.cvt64(), qword[r15 + offsetof(A32JitState, upper_location_descriptor)]);
|
|
code.mov(tmp.cvt64(), 0x80808080'00000003ull);
|
|
code.pext(result.cvt64(), result.cvt64(), tmp.cvt64());
|
|
code.mov(tmp, 0x000f0220);
|
|
code.pdep(result, result, tmp);
|
|
code.mov(tmp, dword[r15 + offsetof(A32JitState, cpsr_q)]);
|
|
code.shl(tmp, 27);
|
|
code.or_(result, tmp);
|
|
code.or_(result, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
|
|
code.or_(result, dword[r15 + offsetof(A32JitState, cpsr_jaifm)]);
|
|
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
} else {
|
|
ctx.reg_alloc.HostCall(inst);
|
|
code.mov(code.ABI_PARAM1, code.r15);
|
|
code.CallFunction(&GetCpsrImpl);
|
|
}
|
|
}
|
|
|
|
static void SetCpsrImpl(u32 value, A32JitState* jit_state) {
|
|
jit_state->SetCpsr(value);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
|
|
if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
|
|
const Xbyak::Reg32 cpsr = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
const Xbyak::Reg32 tmp2 = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
|
|
if (config.always_little_endian) {
|
|
code.and_(cpsr, 0xFFFFFDFF);
|
|
}
|
|
|
|
// cpsr_q
|
|
code.bt(cpsr, 27);
|
|
code.setc(code.byte[r15 + offsetof(A32JitState, cpsr_q)]);
|
|
|
|
// cpsr_nzcv
|
|
code.mov(tmp, cpsr);
|
|
code.and_(tmp, 0xF0000000);
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], tmp);
|
|
|
|
// cpsr_jaifm
|
|
code.mov(tmp, cpsr);
|
|
code.and_(tmp, 0x07F0FDDF);
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_jaifm)], tmp);
|
|
|
|
// cpsr_et and cpsr_ge
|
|
static_assert(offsetof(A32JitState, upper_location_descriptor) + 4 == offsetof(A32JitState, cpsr_ge));
|
|
// This mask is 0x7FFF0000, because we do not want the MSB to be sign extended to the upper dword.
|
|
static_assert((A32::LocationDescriptor::FPSCR_MODE_MASK & ~0x7FFF0000) == 0);
|
|
code.and_(qword[r15 + offsetof(A32JitState, upper_location_descriptor)], u32(0x7FFF0000));
|
|
code.mov(tmp, 0x000f0220);
|
|
code.pext(cpsr, cpsr, tmp);
|
|
code.mov(tmp.cvt64(), 0x01010101'00000003ull);
|
|
code.pdep(cpsr.cvt64(), cpsr.cvt64(), tmp.cvt64());
|
|
// We perform SWAR partitioned subtraction here, to negate the GE bytes.
|
|
code.mov(tmp.cvt64(), 0x80808080'00000003ull);
|
|
code.mov(tmp2.cvt64(), tmp.cvt64());
|
|
code.sub(tmp.cvt64(), cpsr.cvt64());
|
|
code.xor_(tmp.cvt64(), tmp2.cvt64());
|
|
code.or_(qword[r15 + offsetof(A32JitState, upper_location_descriptor)], tmp.cvt64());
|
|
} else {
|
|
ctx.reg_alloc.HostCall(nullptr, args[0]);
|
|
|
|
if (config.always_little_endian) {
|
|
code.and_(code.ABI_PARAM1, 0xFFFFFDFF);
|
|
}
|
|
|
|
code.mov(code.ABI_PARAM2, code.r15);
|
|
code.CallFunction(&SetCpsrImpl);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetCpsrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
const u32 imm = args[0].GetImmediateU32();
|
|
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], u32(imm & 0xF0000000));
|
|
} else {
|
|
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.and_(a, 0xF0000000);
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], a);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetCpsrNZCVQ(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
const u32 imm = args[0].GetImmediateU32();
|
|
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], u32(imm & 0xF0000000));
|
|
code.mov(code.byte[r15 + offsetof(A32JitState, cpsr_q)], u8((imm & 0x08000000) != 0 ? 1 : 0));
|
|
} else {
|
|
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.bt(a, 27);
|
|
code.setc(code.byte[r15 + offsetof(A32JitState, cpsr_q)]);
|
|
code.and_(a, 0xF0000000);
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], a);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetNFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
code.mov(result, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
|
|
code.shr(result, 31);
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetNFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
constexpr size_t flag_bit = 31;
|
|
constexpr u32 flag_mask = 1u << flag_bit;
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
if (args[0].GetImmediateU1()) {
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], flag_mask);
|
|
} else {
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
}
|
|
} else {
|
|
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.shl(to_store, flag_bit);
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetZFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
code.mov(result, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
|
|
code.shr(result, 30);
|
|
code.and_(result, 1);
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetZFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
constexpr size_t flag_bit = 30;
|
|
constexpr u32 flag_mask = 1u << flag_bit;
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
if (args[0].GetImmediateU1()) {
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], flag_mask);
|
|
} else {
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
}
|
|
} else {
|
|
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.shl(to_store, flag_bit);
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetCheckBit(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
const Xbyak::Reg8 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt8();
|
|
code.mov(code.byte[r15 + offsetof(A32JitState, check_bit)], to_store);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetCFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
code.mov(result, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
|
|
code.shr(result, 29);
|
|
code.and_(result, 1);
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetCFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
constexpr size_t flag_bit = 29;
|
|
constexpr u32 flag_mask = 1u << flag_bit;
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
if (args[0].GetImmediateU1()) {
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], flag_mask);
|
|
} else {
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
}
|
|
} else {
|
|
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.shl(to_store, flag_bit);
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetVFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
code.mov(result, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
|
|
code.shr(result, 28);
|
|
code.and_(result, 1);
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetVFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
constexpr size_t flag_bit = 28;
|
|
constexpr u32 flag_mask = 1u << flag_bit;
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
if (args[0].GetImmediateU1()) {
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], flag_mask);
|
|
} else {
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
}
|
|
} else {
|
|
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.shl(to_store, flag_bit);
|
|
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
|
|
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32OrQFlag(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
if (args[0].GetImmediateU1()) {
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_q)], 1);
|
|
}
|
|
} else {
|
|
const Xbyak::Reg8 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt8();
|
|
|
|
code.or_(code.byte[r15 + offsetof(A32JitState, cpsr_q)], to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetGEFlags(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
|
code.movd(result, dword[r15 + offsetof(A32JitState, cpsr_ge)]);
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetGEFlags(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
ASSERT(!args[0].IsImmediate());
|
|
|
|
if (args[0].IsInXmm()) {
|
|
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[0]);
|
|
code.movd(dword[r15 + offsetof(A32JitState, cpsr_ge)], to_store);
|
|
} else {
|
|
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt32();
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], to_store);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetGEFlagsCompressed(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
if (args[0].IsImmediate()) {
|
|
const u32 imm = args[0].GetImmediateU32();
|
|
u32 ge = 0;
|
|
ge |= Common::Bit<19>(imm) ? 0xFF000000 : 0;
|
|
ge |= Common::Bit<18>(imm) ? 0x00FF0000 : 0;
|
|
ge |= Common::Bit<17>(imm) ? 0x0000FF00 : 0;
|
|
ge |= Common::Bit<16>(imm) ? 0x000000FF : 0;
|
|
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], ge);
|
|
} else if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
|
|
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
const Xbyak::Reg32 b = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
|
|
code.mov(b, 0x01010101);
|
|
code.shr(a, 16);
|
|
code.pdep(a, a, b);
|
|
code.imul(a, a, 0xFF);
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], a);
|
|
} else {
|
|
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.shr(a, 16);
|
|
code.and_(a, 0xF);
|
|
code.imul(a, a, 0x00204081);
|
|
code.and_(a, 0x01010101);
|
|
code.imul(a, a, 0xFF);
|
|
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], a);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32DataSynchronizationBarrier(A32EmitContext&, IR::Inst*) {
|
|
code.mfence();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32DataMemoryBarrier(A32EmitContext&, IR::Inst*) {
|
|
code.lfence();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32InstructionSynchronizationBarrier(A32EmitContext& ctx, IR::Inst*) {
|
|
ctx.reg_alloc.HostCall(nullptr);
|
|
|
|
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(jit_interface));
|
|
code.CallFunction(static_cast<void(*)(A32::Jit*)>([](A32::Jit* jit) {
|
|
jit->ClearCache();
|
|
}));
|
|
}
|
|
|
|
void A32EmitX64::EmitA32BXWritePC(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
auto& arg = args[0];
|
|
|
|
const u32 upper_without_t = (ctx.Location().UniqueHash() >> 32) & 0xFFFFFFFE;
|
|
|
|
// Pseudocode:
|
|
// if (new_pc & 1) {
|
|
// new_pc &= 0xFFFFFFFE;
|
|
// cpsr.T = true;
|
|
// } else {
|
|
// new_pc &= 0xFFFFFFFC;
|
|
// cpsr.T = false;
|
|
// }
|
|
// We rely on the fact we disallow EFlag from changing within a block.
|
|
|
|
if (arg.IsImmediate()) {
|
|
const u32 new_pc = arg.GetImmediateU32();
|
|
const u32 mask = Common::Bit<0>(new_pc) ? 0xFFFFFFFE : 0xFFFFFFFC;
|
|
const u32 new_upper = upper_without_t | (Common::Bit<0>(new_pc) ? 1 : 0);
|
|
|
|
code.mov(MJitStateReg(A32::Reg::PC), new_pc & mask);
|
|
code.mov(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], new_upper);
|
|
} else {
|
|
const Xbyak::Reg32 new_pc = ctx.reg_alloc.UseScratchGpr(arg).cvt32();
|
|
const Xbyak::Reg32 mask = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
const Xbyak::Reg32 new_upper = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
|
|
code.mov(mask, new_pc);
|
|
code.and_(mask, 1);
|
|
code.lea(new_upper, ptr[mask.cvt64() + upper_without_t]);
|
|
code.lea(mask, ptr[mask.cvt64() + mask.cvt64() * 1 - 4]); // mask = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC
|
|
code.and_(new_pc, mask);
|
|
code.mov(MJitStateReg(A32::Reg::PC), new_pc);
|
|
code.mov(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], new_upper);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CallSupervisor(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ctx.reg_alloc.HostCall(nullptr);
|
|
|
|
code.SwitchMxcsrOnExit();
|
|
code.mov(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_to_run)]);
|
|
code.sub(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_remaining)]);
|
|
Devirtualize<&A32::UserCallbacks::AddTicks>(config.callbacks).EmitCall(code);
|
|
ctx.reg_alloc.EndOfAllocScope();
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
ctx.reg_alloc.HostCall(nullptr, {}, args[0]);
|
|
Devirtualize<&A32::UserCallbacks::CallSVC>(config.callbacks).EmitCall(code);
|
|
Devirtualize<&A32::UserCallbacks::GetTicksRemaining>(config.callbacks).EmitCall(code);
|
|
code.mov(qword[r15 + offsetof(A32JitState, cycles_to_run)], code.ABI_RETURN);
|
|
code.mov(qword[r15 + offsetof(A32JitState, cycles_remaining)], code.ABI_RETURN);
|
|
code.SwitchMxcsrOnEntry();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ExceptionRaised(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ctx.reg_alloc.HostCall(nullptr);
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
ASSERT(args[0].IsImmediate() && args[1].IsImmediate());
|
|
const u32 pc = args[0].GetImmediateU32();
|
|
const u64 exception = args[1].GetImmediateU64();
|
|
Devirtualize<&A32::UserCallbacks::ExceptionRaised>(config.callbacks).EmitCall(code, [&](RegList param) {
|
|
code.mov(param[0], pc);
|
|
code.mov(param[1], exception);
|
|
});
|
|
}
|
|
|
|
static u32 GetFpscrImpl(A32JitState* jit_state) {
|
|
return jit_state->Fpscr();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetFpscr(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ctx.reg_alloc.HostCall(inst);
|
|
code.mov(code.ABI_PARAM1, code.r15);
|
|
|
|
code.stmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]);
|
|
code.CallFunction(&GetFpscrImpl);
|
|
}
|
|
|
|
static void SetFpscrImpl(u32 value, A32JitState* jit_state) {
|
|
jit_state->SetFpscr(value);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetFpscr(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
ctx.reg_alloc.HostCall(nullptr, args[0]);
|
|
code.mov(code.ABI_PARAM2, code.r15);
|
|
|
|
code.CallFunction(&SetFpscrImpl);
|
|
code.ldmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32GetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
code.mov(result, dword[r15 + offsetof(A32JitState, fpsr_nzcv)]);
|
|
ctx.reg_alloc.DefineValue(inst, result);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
const Xbyak::Reg32 value = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
|
|
|
|
code.and_(value, 0b11000001'00000001);
|
|
code.imul(value, value, 0b00010000'00100001);
|
|
code.shl(value, 16);
|
|
code.and_(value, 0xF0000000);
|
|
|
|
code.mov(dword[r15 + offsetof(A32JitState, fpsr_nzcv)], value);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
|
|
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
|
|
}
|
|
|
|
void A32EmitX64::EmitA32SetExclusive(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
ASSERT(args[1].IsImmediate());
|
|
const Xbyak::Reg32 address = ctx.reg_alloc.UseGpr(args[0]).cvt32();
|
|
|
|
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
|
|
code.mov(dword[r15 + offsetof(A32JitState, exclusive_address)], address);
|
|
}
|
|
|
|
static Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, RegAlloc& reg_alloc,
|
|
const A32::UserConfig& config, Xbyak::Label& abort,
|
|
Xbyak::Reg64 vaddr,
|
|
std::optional<Xbyak::Reg64> arg_scratch = {}) {
|
|
constexpr size_t page_bits = A32::UserConfig::PAGE_BITS;
|
|
const Xbyak::Reg64 page_table = arg_scratch ? *arg_scratch : reg_alloc.ScratchGpr();
|
|
const Xbyak::Reg64 tmp = reg_alloc.ScratchGpr();
|
|
code.mov(page_table, reinterpret_cast<u64>(config.page_table));
|
|
code.mov(tmp, vaddr);
|
|
code.shr(tmp, static_cast<int>(page_bits));
|
|
code.mov(page_table, qword[page_table + tmp * sizeof(void*)]);
|
|
code.test(page_table, page_table);
|
|
code.jz(abort);
|
|
if (config.absolute_offset_page_table) {
|
|
return page_table + vaddr;
|
|
}
|
|
constexpr size_t page_mask = (1 << page_bits) - 1;
|
|
code.mov(tmp, vaddr);
|
|
code.and_(tmp, static_cast<u32>(page_mask));
|
|
return page_table + tmp;
|
|
}
|
|
|
|
template <typename T, T (A32::UserCallbacks::*raw_fn)(A32::VAddr)>
|
|
static void ReadMemory(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, const CodePtr wrapped_fn) {
|
|
constexpr size_t bit_size = Common::BitSize<T>();
|
|
auto args = reg_alloc.GetArgumentInfo(inst);
|
|
|
|
if (!config.page_table) {
|
|
reg_alloc.HostCall(inst, {}, args[0]);
|
|
Devirtualize<raw_fn>(config.callbacks).EmitCall(code);
|
|
return;
|
|
}
|
|
|
|
Xbyak::Label abort, end;
|
|
|
|
reg_alloc.UseScratch(args[0], ABI_PARAM2);
|
|
|
|
const Xbyak::Reg64 vaddr = code.ABI_PARAM2;
|
|
const Xbyak::Reg64 value = reg_alloc.ScratchGpr({ABI_RETURN});
|
|
|
|
const auto src_ptr = EmitVAddrLookup(code, reg_alloc, config, abort, vaddr, value);
|
|
switch (bit_size) {
|
|
case 8:
|
|
code.movzx(value.cvt32(), code.byte[src_ptr]);
|
|
break;
|
|
case 16:
|
|
code.movzx(value.cvt32(), word[src_ptr]);
|
|
break;
|
|
case 32:
|
|
code.mov(value.cvt32(), dword[src_ptr]);
|
|
break;
|
|
case 64:
|
|
code.mov(value, qword[src_ptr]);
|
|
break;
|
|
default:
|
|
ASSERT_MSG(false, "Invalid bit_size");
|
|
break;
|
|
}
|
|
code.jmp(end);
|
|
code.L(abort);
|
|
code.call(wrapped_fn);
|
|
code.L(end);
|
|
|
|
reg_alloc.DefineValue(inst, value);
|
|
}
|
|
|
|
template <typename T, void (A32::UserCallbacks::*raw_fn)(A32::VAddr, T)>
|
|
static void WriteMemory(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, const CodePtr wrapped_fn) {
|
|
constexpr size_t bit_size = Common::BitSize<T>();
|
|
auto args = reg_alloc.GetArgumentInfo(inst);
|
|
|
|
if (!config.page_table) {
|
|
reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
|
|
Devirtualize<raw_fn>(config.callbacks).EmitCall(code);
|
|
return;
|
|
}
|
|
|
|
Xbyak::Label abort, end;
|
|
|
|
reg_alloc.ScratchGpr({ABI_RETURN});
|
|
reg_alloc.UseScratch(args[0], ABI_PARAM2);
|
|
reg_alloc.UseScratch(args[1], ABI_PARAM3);
|
|
|
|
const Xbyak::Reg64 vaddr = code.ABI_PARAM2;
|
|
const Xbyak::Reg64 value = code.ABI_PARAM3;
|
|
|
|
const auto dest_ptr = EmitVAddrLookup(code, reg_alloc, config, abort, vaddr);
|
|
switch (bit_size) {
|
|
case 8:
|
|
code.mov(code.byte[dest_ptr], value.cvt8());
|
|
break;
|
|
case 16:
|
|
code.mov(word[dest_ptr], value.cvt16());
|
|
break;
|
|
case 32:
|
|
code.mov(dword[dest_ptr], value.cvt32());
|
|
break;
|
|
case 64:
|
|
code.mov(qword[dest_ptr], value);
|
|
break;
|
|
default:
|
|
ASSERT_MSG(false, "Invalid bit_size");
|
|
break;
|
|
}
|
|
code.jmp(end);
|
|
code.L(abort);
|
|
code.call(wrapped_fn);
|
|
code.L(end);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ReadMemory<u8, &A32::UserCallbacks::MemoryRead8>(code, ctx.reg_alloc, inst, config, read_memory_8);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ReadMemory<u16, &A32::UserCallbacks::MemoryRead16>(code, ctx.reg_alloc, inst, config, read_memory_16);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ReadMemory<u32, &A32::UserCallbacks::MemoryRead32>(code, ctx.reg_alloc, inst, config, read_memory_32);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ReadMemory<u64, &A32::UserCallbacks::MemoryRead64>(code, ctx.reg_alloc, inst, config, read_memory_64);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
|
|
WriteMemory<u8, &A32::UserCallbacks::MemoryWrite8>(code, ctx.reg_alloc, inst, config, write_memory_8);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
|
|
WriteMemory<u16, &A32::UserCallbacks::MemoryWrite16>(code, ctx.reg_alloc, inst, config, write_memory_16);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
|
|
WriteMemory<u32, &A32::UserCallbacks::MemoryWrite32>(code, ctx.reg_alloc, inst, config, write_memory_32);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
|
|
WriteMemory<u64, &A32::UserCallbacks::MemoryWrite64>(code, ctx.reg_alloc, inst, config, write_memory_64);
|
|
}
|
|
|
|
template <typename T, void (A32::UserCallbacks::*fn)(A32::VAddr, T)>
|
|
static void ExclusiveWrite(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, bool prepend_high_word) {
|
|
auto args = reg_alloc.GetArgumentInfo(inst);
|
|
if (prepend_high_word) {
|
|
reg_alloc.HostCall(nullptr, {}, args[0], args[1], args[2]);
|
|
} else {
|
|
reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
|
|
}
|
|
const Xbyak::Reg32 passed = reg_alloc.ScratchGpr().cvt32();
|
|
const Xbyak::Reg32 tmp = code.ABI_RETURN.cvt32(); // Use one of the unused HostCall registers.
|
|
|
|
Xbyak::Label end;
|
|
|
|
code.mov(passed, u32(1));
|
|
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
|
|
code.je(end);
|
|
code.mov(tmp, code.ABI_PARAM2);
|
|
code.xor_(tmp, dword[r15 + offsetof(A32JitState, exclusive_address)]);
|
|
code.test(tmp, A32JitState::RESERVATION_GRANULE_MASK);
|
|
code.jne(end);
|
|
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
|
|
if (prepend_high_word) {
|
|
code.mov(code.ABI_PARAM3.cvt32(), code.ABI_PARAM3.cvt32()); // zero extend to 64-bits
|
|
code.shl(code.ABI_PARAM4, 32);
|
|
code.or_(code.ABI_PARAM3, code.ABI_PARAM4);
|
|
}
|
|
Devirtualize<fn>(config.callbacks).EmitCall(code);
|
|
code.xor_(passed, passed);
|
|
code.L(end);
|
|
|
|
reg_alloc.DefineValue(inst, passed);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ExclusiveWrite<u8, &A32::UserCallbacks::MemoryWrite8>(code, ctx.reg_alloc, inst, config, false);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ExclusiveWrite<u16, &A32::UserCallbacks::MemoryWrite16>(code, ctx.reg_alloc, inst, config, false);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ExclusiveWrite<u32, &A32::UserCallbacks::MemoryWrite32>(code, ctx.reg_alloc, inst, config, false);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
|
|
ExclusiveWrite<u64, &A32::UserCallbacks::MemoryWrite64>(code, ctx.reg_alloc, inst, config, true);
|
|
}
|
|
|
|
static void EmitCoprocessorException() {
|
|
ASSERT_MSG(false, "Should raise coproc exception here");
|
|
}
|
|
|
|
static void CallCoprocCallback(BlockOfCode& code, RegAlloc& reg_alloc, A32::Jit* jit_interface,
|
|
A32::Coprocessor::Callback callback, IR::Inst* inst = nullptr,
|
|
std::optional<Argument::copyable_reference> arg0 = {},
|
|
std::optional<Argument::copyable_reference> arg1 = {}) {
|
|
reg_alloc.HostCall(inst, {}, {}, arg0, arg1);
|
|
|
|
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(jit_interface));
|
|
if (callback.user_arg) {
|
|
code.mov(code.ABI_PARAM2, reinterpret_cast<u64>(*callback.user_arg));
|
|
}
|
|
|
|
code.CallFunction(callback.function);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocInternalOperation(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const auto opc1 = static_cast<unsigned>(coproc_info[2]);
|
|
const auto CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
const auto CRn = static_cast<A32::CoprocReg>(coproc_info[4]);
|
|
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[5]);
|
|
const auto opc2 = static_cast<unsigned>(coproc_info[6]);
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
const auto action = coproc->CompileInternalOperation(two, opc1, CRd, CRn, CRm, opc2);
|
|
if (!action) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocSendOneWord(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const auto opc1 = static_cast<unsigned>(coproc_info[2]);
|
|
const auto CRn = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[4]);
|
|
const auto opc2 = static_cast<unsigned>(coproc_info[5]);
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
const auto action = coproc->CompileSendOneWord(two, opc1, CRn, CRm, opc2);
|
|
|
|
if (std::holds_alternative<std::monostate>(action)) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, nullptr, args[1]);
|
|
return;
|
|
}
|
|
|
|
if (const auto destination_ptr = std::get_if<u32*>(&action)) {
|
|
const Xbyak::Reg32 reg_word = ctx.reg_alloc.UseGpr(args[1]).cvt32();
|
|
const Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
|
|
|
|
code.mov(reg_destination_addr, reinterpret_cast<u64>(*destination_ptr));
|
|
code.mov(code.dword[reg_destination_addr], reg_word);
|
|
|
|
return;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocSendTwoWords(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const auto opc = static_cast<unsigned>(coproc_info[2]);
|
|
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
const auto action = coproc->CompileSendTwoWords(two, opc, CRm);
|
|
|
|
if (std::holds_alternative<std::monostate>(action)) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, nullptr, args[1], args[2]);
|
|
return;
|
|
}
|
|
|
|
if (const auto destination_ptrs = std::get_if<std::array<u32*, 2>>(&action)) {
|
|
const Xbyak::Reg32 reg_word1 = ctx.reg_alloc.UseGpr(args[1]).cvt32();
|
|
const Xbyak::Reg32 reg_word2 = ctx.reg_alloc.UseGpr(args[2]).cvt32();
|
|
const Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
|
|
|
|
code.mov(reg_destination_addr, reinterpret_cast<u64>((*destination_ptrs)[0]));
|
|
code.mov(code.dword[reg_destination_addr], reg_word1);
|
|
code.mov(reg_destination_addr, reinterpret_cast<u64>((*destination_ptrs)[1]));
|
|
code.mov(code.dword[reg_destination_addr], reg_word2);
|
|
|
|
return;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocGetOneWord(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const auto opc1 = static_cast<unsigned>(coproc_info[2]);
|
|
const auto CRn = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[4]);
|
|
const auto opc2 = static_cast<unsigned>(coproc_info[5]);
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
const auto action = coproc->CompileGetOneWord(two, opc1, CRn, CRm, opc2);
|
|
|
|
if (std::holds_alternative<std::monostate>(action)) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, inst);
|
|
return;
|
|
}
|
|
|
|
if (const auto source_ptr = std::get_if<u32*>(&action)) {
|
|
const Xbyak::Reg32 reg_word = ctx.reg_alloc.ScratchGpr().cvt32();
|
|
const Xbyak::Reg64 reg_source_addr = ctx.reg_alloc.ScratchGpr();
|
|
|
|
code.mov(reg_source_addr, reinterpret_cast<u64>(*source_ptr));
|
|
code.mov(reg_word, code.dword[reg_source_addr]);
|
|
|
|
ctx.reg_alloc.DefineValue(inst, reg_word);
|
|
|
|
return;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocGetTwoWords(A32EmitContext& ctx, IR::Inst* inst) {
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const unsigned opc = coproc_info[2];
|
|
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
auto action = coproc->CompileGetTwoWords(two, opc, CRm);
|
|
|
|
if (std::holds_alternative<std::monostate>(action)) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, inst);
|
|
return;
|
|
}
|
|
|
|
if (const auto source_ptrs = std::get_if<std::array<u32*, 2>>(&action)) {
|
|
const Xbyak::Reg64 reg_result = ctx.reg_alloc.ScratchGpr();
|
|
const Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
|
|
const Xbyak::Reg64 reg_tmp = ctx.reg_alloc.ScratchGpr();
|
|
|
|
code.mov(reg_destination_addr, reinterpret_cast<u64>((*source_ptrs)[1]));
|
|
code.mov(reg_result.cvt32(), code.dword[reg_destination_addr]);
|
|
code.shl(reg_result, 32);
|
|
code.mov(reg_destination_addr, reinterpret_cast<u64>((*source_ptrs)[0]));
|
|
code.mov(reg_tmp.cvt32(), code.dword[reg_destination_addr]);
|
|
code.or_(reg_result, reg_tmp);
|
|
|
|
ctx.reg_alloc.DefineValue(inst, reg_result);
|
|
|
|
return;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocLoadWords(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const bool long_transfer = coproc_info[2] != 0;
|
|
const auto CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
const bool has_option = coproc_info[4] != 0;
|
|
|
|
std::optional<u8> option = std::nullopt;
|
|
if (has_option) {
|
|
option = coproc_info[5];
|
|
}
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
const auto action = coproc->CompileLoadWords(two, long_transfer, CRd, option);
|
|
if (!action) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]);
|
|
}
|
|
|
|
void A32EmitX64::EmitA32CoprocStoreWords(A32EmitContext& ctx, IR::Inst* inst) {
|
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
|
|
|
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
|
|
const size_t coproc_num = coproc_info[0];
|
|
const bool two = coproc_info[1] != 0;
|
|
const bool long_transfer = coproc_info[2] != 0;
|
|
const auto CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
|
|
const bool has_option = coproc_info[4] != 0;
|
|
|
|
std::optional<u8> option = std::nullopt;
|
|
if (has_option) {
|
|
option = coproc_info[5];
|
|
}
|
|
|
|
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
|
|
if (!coproc) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
const auto action = coproc->CompileStoreWords(two, long_transfer, CRd, option);
|
|
if (!action) {
|
|
EmitCoprocessorException();
|
|
return;
|
|
}
|
|
|
|
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]);
|
|
}
|
|
|
|
std::string A32EmitX64::LocationDescriptorToFriendlyName(const IR::LocationDescriptor& ir_descriptor) const {
|
|
const A32::LocationDescriptor descriptor{ir_descriptor};
|
|
return fmt::format("a32_{}{:08X}_{}_fpcr{:08X}",
|
|
descriptor.TFlag() ? "t" : "a",
|
|
descriptor.PC(),
|
|
descriptor.EFlag() ? "be" : "le",
|
|
descriptor.FPSCR().Value());
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location) {
|
|
ASSERT_MSG(A32::LocationDescriptor{terminal.next}.TFlag() == A32::LocationDescriptor{initial_location}.TFlag(), "Unimplemented");
|
|
ASSERT_MSG(A32::LocationDescriptor{terminal.next}.EFlag() == A32::LocationDescriptor{initial_location}.EFlag(), "Unimplemented");
|
|
ASSERT_MSG(terminal.num_instructions == 1, "Unimplemented");
|
|
|
|
code.mov(code.ABI_PARAM2.cvt32(), A32::LocationDescriptor{terminal.next}.PC());
|
|
code.mov(code.ABI_PARAM3.cvt32(), 1);
|
|
code.mov(MJitStateReg(A32::Reg::PC), code.ABI_PARAM2.cvt32());
|
|
code.SwitchMxcsrOnExit();
|
|
Devirtualize<&A32::UserCallbacks::InterpreterFallback>(config.callbacks).EmitCall(code);
|
|
code.ReturnFromRunCode(true); // TODO: Check cycles
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::ReturnToDispatch, IR::LocationDescriptor) {
|
|
code.ReturnFromRunCode();
|
|
}
|
|
|
|
void A32EmitX64::EmitSetUpperLocationDescriptor(IR::LocationDescriptor new_location, IR::LocationDescriptor old_location) {
|
|
auto get_upper = [](const IR::LocationDescriptor& desc) -> u32 {
|
|
return static_cast<u32>(desc.Value() >> 32);
|
|
};
|
|
|
|
const u32 old_upper = get_upper(old_location);
|
|
const u32 new_upper = [&]{
|
|
const u32 mask = ~u32(config.always_little_endian ? 0x2 : 0);
|
|
return get_upper(new_location) & mask;
|
|
}();
|
|
|
|
if (old_upper != new_upper) {
|
|
code.mov(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], new_upper);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location) {
|
|
EmitSetUpperLocationDescriptor(terminal.next, initial_location);
|
|
|
|
code.cmp(qword[r15 + offsetof(A32JitState, cycles_remaining)], 0);
|
|
|
|
patch_information[terminal.next].jg.emplace_back(code.getCurr());
|
|
if (const auto next_bb = GetBasicBlock(terminal.next)) {
|
|
EmitPatchJg(terminal.next, next_bb->entrypoint);
|
|
} else {
|
|
EmitPatchJg(terminal.next);
|
|
}
|
|
Xbyak::Label dest;
|
|
code.jmp(dest, Xbyak::CodeGenerator::T_NEAR);
|
|
|
|
code.SwitchToFarCode();
|
|
code.align(16);
|
|
code.L(dest);
|
|
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{terminal.next}.PC());
|
|
PushRSBHelper(rax, rbx, terminal.next);
|
|
code.ForceReturnFromRunCode();
|
|
code.SwitchToNearCode();
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location) {
|
|
EmitSetUpperLocationDescriptor(terminal.next, initial_location);
|
|
|
|
patch_information[terminal.next].jmp.emplace_back(code.getCurr());
|
|
if (const auto next_bb = GetBasicBlock(terminal.next)) {
|
|
EmitPatchJmp(terminal.next, next_bb->entrypoint);
|
|
} else {
|
|
EmitPatchJmp(terminal.next);
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::PopRSBHint, IR::LocationDescriptor) {
|
|
code.jmp(terminal_handler_pop_rsb_hint);
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::FastDispatchHint, IR::LocationDescriptor) {
|
|
if (config.enable_fast_dispatch) {
|
|
code.jmp(terminal_handler_fast_dispatch_hint);
|
|
} else {
|
|
code.ReturnFromRunCode();
|
|
}
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::If terminal, IR::LocationDescriptor initial_location) {
|
|
Xbyak::Label pass = EmitCond(terminal.if_);
|
|
EmitTerminal(terminal.else_, initial_location);
|
|
code.L(pass);
|
|
EmitTerminal(terminal.then_, initial_location);
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::CheckBit terminal, IR::LocationDescriptor initial_location) {
|
|
Xbyak::Label fail;
|
|
code.cmp(code.byte[r15 + offsetof(A32JitState, check_bit)], u8(0));
|
|
code.jz(fail);
|
|
EmitTerminal(terminal.then_, initial_location);
|
|
code.L(fail);
|
|
EmitTerminal(terminal.else_, initial_location);
|
|
}
|
|
|
|
void A32EmitX64::EmitTerminalImpl(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location) {
|
|
code.cmp(code.byte[r15 + offsetof(A32JitState, halt_requested)], u8(0));
|
|
code.jne(code.GetForceReturnFromRunCodeAddress());
|
|
EmitTerminal(terminal.else_, initial_location);
|
|
}
|
|
|
|
void A32EmitX64::EmitPatchJg(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
|
|
const CodePtr patch_location = code.getCurr();
|
|
if (target_code_ptr) {
|
|
code.jg(target_code_ptr);
|
|
} else {
|
|
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC());
|
|
code.jg(code.GetReturnFromRunCodeAddress());
|
|
}
|
|
code.EnsurePatchLocationSize(patch_location, 14);
|
|
}
|
|
|
|
void A32EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
|
|
const CodePtr patch_location = code.getCurr();
|
|
if (target_code_ptr) {
|
|
code.jmp(target_code_ptr);
|
|
} else {
|
|
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC());
|
|
code.jmp(code.GetReturnFromRunCodeAddress());
|
|
}
|
|
code.EnsurePatchLocationSize(patch_location, 13);
|
|
}
|
|
|
|
void A32EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) {
|
|
if (!target_code_ptr) {
|
|
target_code_ptr = code.GetReturnFromRunCodeAddress();
|
|
}
|
|
const CodePtr patch_location = code.getCurr();
|
|
code.mov(code.rcx, reinterpret_cast<u64>(target_code_ptr));
|
|
code.EnsurePatchLocationSize(patch_location, 10);
|
|
}
|
|
|
|
} // namespace Dynarmic::BackendX64
|