/* This file is part of the dynarmic project. * Copyright (c) 2018 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include "common/assert.h" #include "a64_unicorn.h" #define CHECKED(expr) \ do { \ if (auto cerr_ = (expr)) { \ ASSERT_MSG(false, "Call " #expr " failed with error: {} ({})\n", cerr_, \ uc_strerror(cerr_)); \ } \ } while (0) constexpr u64 BEGIN_ADDRESS = 0; constexpr u64 END_ADDRESS = ~u64(0); A64Unicorn::A64Unicorn(A64TestEnv& testenv) : testenv(testenv) { CHECKED(uc_open(UC_ARCH_ARM64, UC_MODE_ARM, &uc)); u64 fpv = 3 << 20; CHECKED(uc_reg_write(uc, UC_ARM64_REG_CPACR_EL1, &fpv)); CHECKED(uc_hook_add(uc, &intr_hook, UC_HOOK_INTR, (void*)InterruptHook, this, BEGIN_ADDRESS, END_ADDRESS)); CHECKED(uc_hook_add(uc, &mem_invalid_hook, UC_HOOK_MEM_INVALID, (void*)UnmappedMemoryHook, this, BEGIN_ADDRESS, END_ADDRESS)); CHECKED(uc_hook_add(uc, &mem_write_prot_hook, UC_HOOK_MEM_WRITE, (void*)MemoryWriteHook, this, BEGIN_ADDRESS, END_ADDRESS)); } A64Unicorn::~A64Unicorn() { ClearPageCache(); CHECKED(uc_hook_del(uc, intr_hook)); CHECKED(uc_hook_del(uc, mem_invalid_hook)); CHECKED(uc_close(uc)); } void A64Unicorn::Run() { while (testenv.ticks_left > 0) { CHECKED(uc_emu_start(uc, GetPC(), END_ADDRESS, 0, 1)); testenv.ticks_left--; if (!testenv.interrupts.empty() || testenv.code_mem_modified_by_guest) { return; } } } u64 A64Unicorn::GetSP() const { u64 sp; CHECKED(uc_reg_read(uc, UC_ARM64_REG_SP, &sp)); return sp; } void A64Unicorn::SetSP(u64 value) { CHECKED(uc_reg_write(uc, UC_ARM64_REG_SP, &value)); } u64 A64Unicorn::GetPC() const { u64 pc; CHECKED(uc_reg_read(uc, UC_ARM64_REG_PC, &pc)); return pc; } void A64Unicorn::SetPC(u64 value) { CHECKED(uc_reg_write(uc, UC_ARM64_REG_PC, &value)); } constexpr std::array gpr_ids{ UC_ARM64_REG_X0, UC_ARM64_REG_X1, UC_ARM64_REG_X2, UC_ARM64_REG_X3, UC_ARM64_REG_X4, UC_ARM64_REG_X5, UC_ARM64_REG_X6, UC_ARM64_REG_X7, UC_ARM64_REG_X8, UC_ARM64_REG_X9, UC_ARM64_REG_X10, UC_ARM64_REG_X11, UC_ARM64_REG_X12, UC_ARM64_REG_X13, UC_ARM64_REG_X14, UC_ARM64_REG_X15, UC_ARM64_REG_X16, UC_ARM64_REG_X17, UC_ARM64_REG_X18, UC_ARM64_REG_X19, UC_ARM64_REG_X20, UC_ARM64_REG_X21, UC_ARM64_REG_X22, UC_ARM64_REG_X23, UC_ARM64_REG_X24, UC_ARM64_REG_X25, UC_ARM64_REG_X26, UC_ARM64_REG_X27, UC_ARM64_REG_X28, UC_ARM64_REG_X29, UC_ARM64_REG_X30 }; A64Unicorn::RegisterArray A64Unicorn::GetRegisters() const { RegisterArray regs{}; RegisterPtrArray ptrs; for (size_t i = 0; i < ptrs.size(); ++i) ptrs[i] = ®s[i]; CHECKED(uc_reg_read_batch(uc, const_cast(gpr_ids.data()), reinterpret_cast(ptrs.data()), static_cast(num_gprs))); return regs; } void A64Unicorn::SetRegisters(const RegisterArray& value) { RegisterConstPtrArray ptrs; for (size_t i = 0; i < ptrs.size(); ++i) ptrs[i] = &value[i]; CHECKED(uc_reg_write_batch(uc, const_cast(gpr_ids.data()), reinterpret_cast(const_cast(ptrs.data())), static_cast(num_gprs))); } constexpr std::array vec_ids{ UC_ARM64_REG_Q0, UC_ARM64_REG_Q1, UC_ARM64_REG_Q2, UC_ARM64_REG_Q3, UC_ARM64_REG_Q4, UC_ARM64_REG_Q5, UC_ARM64_REG_Q6, UC_ARM64_REG_Q7, UC_ARM64_REG_Q8, UC_ARM64_REG_Q9, UC_ARM64_REG_Q10, UC_ARM64_REG_Q11, UC_ARM64_REG_Q12, UC_ARM64_REG_Q13, UC_ARM64_REG_Q14, UC_ARM64_REG_Q15, UC_ARM64_REG_Q16, UC_ARM64_REG_Q17, UC_ARM64_REG_Q18, UC_ARM64_REG_Q19, UC_ARM64_REG_Q20, UC_ARM64_REG_Q21, UC_ARM64_REG_Q22, UC_ARM64_REG_Q23, UC_ARM64_REG_Q24, UC_ARM64_REG_Q25, UC_ARM64_REG_Q26, UC_ARM64_REG_Q27, UC_ARM64_REG_Q28, UC_ARM64_REG_Q29, UC_ARM64_REG_Q30, UC_ARM64_REG_Q31 }; A64Unicorn::VectorArray A64Unicorn::GetVectors() const { VectorArray vecs{}; VectorPtrArray ptrs; for (size_t i = 0; i < ptrs.size(); ++i) ptrs[i] = &vecs[i]; CHECKED(uc_reg_read_batch(uc, const_cast(vec_ids.data()), reinterpret_cast(ptrs.data()), static_cast(num_vecs))); return vecs; } void A64Unicorn::SetVectors(const VectorArray& value) { VectorConstPtrArray ptrs; for (size_t i = 0; i < ptrs.size(); ++i) ptrs[i] = &value[i]; CHECKED(uc_reg_write_batch(uc, const_cast(vec_ids.data()), reinterpret_cast(const_cast(ptrs.data())), static_cast(num_vecs))); } u32 A64Unicorn::GetFpcr() const { u32 fpcr; CHECKED(uc_reg_read(uc, UC_ARM64_REG_FPCR, &fpcr)); return fpcr; } void A64Unicorn::SetFpcr(u32 value) { CHECKED(uc_reg_write(uc, UC_ARM64_REG_FPCR, &value)); } u32 A64Unicorn::GetFpsr() const { u32 fpsr; CHECKED(uc_reg_read(uc, UC_ARM64_REG_FPSR, &fpsr)); return fpsr; } void A64Unicorn::SetFpsr(u32 value) { CHECKED(uc_reg_write(uc, UC_ARM64_REG_FPSR, &value)); } u32 A64Unicorn::GetPstate() const { u32 pstate; CHECKED(uc_reg_read(uc, UC_ARM64_REG_NZCV, &pstate)); return pstate; } void A64Unicorn::SetPstate(u32 value) { CHECKED(uc_reg_write(uc, UC_ARM64_REG_NZCV, &value)); } void A64Unicorn::ClearPageCache() { for (const auto& page : pages) { CHECKED(uc_mem_unmap(uc, page->address, 4096)); } pages.clear(); } void A64Unicorn::DumpMemoryInformation() { uc_mem_region* regions; u32 count; CHECKED(uc_mem_regions(uc, ®ions, &count)); for (u32 i = 0; i < count; ++i) { printf("region: start 0x%016" PRIx64 " end 0x%016" PRIx64 " perms 0x%08x\n", regions[i].begin, regions[i].end, regions[i].perms); } CHECKED(uc_free(regions)); } void A64Unicorn::InterruptHook(uc_engine* uc, u32 int_number, void* user_data) { auto* this_ = static_cast(user_data); u32 esr; CHECKED(uc_reg_read(uc, UC_ARM64_REG_ESR, &esr)); auto ec = esr >> 26; auto iss = esr & 0xFFFFFF; switch (ec) { case 0x15: // SVC this_->testenv.CallSVC(iss); break; default: this_->testenv.interrupts.emplace_back(fmt::format("Unhandled interrupt: int_number: {:#x}, esr: {:#x} (ec: {:#x}, iss: {:#x})", int_number, esr, ec, iss)); break; } } bool A64Unicorn::UnmappedMemoryHook(uc_engine* uc, uc_mem_type /*type*/, u64 start_address, int size, u64 /*value*/, void* user_data) { auto* this_ = static_cast(user_data); const auto generate_page = [&](u64 base_address) { // printf("generate_page(%" PRIx64 ")\n", base_address); const u32 permissions = [&]() -> u32 { if (base_address < this_->testenv.code_mem.size() * 4) return UC_PROT_READ | UC_PROT_EXEC; return UC_PROT_READ; }(); auto page = std::make_unique(); page->address = base_address; for (size_t i = 0; i < page->data.size(); ++i) page->data[i] = this_->testenv.MemoryRead8(base_address + i); uc_err err = uc_mem_map_ptr(uc, base_address, page->data.size(), permissions, page->data.data()); if (err == UC_ERR_MAP) return; // page already exists CHECKED(err); this_->pages.emplace_back(std::move(page)); }; const auto is_in_range = [](u64 addr, u64 start, u64 end) { if (start <= end) return addr >= start && addr <= end; // fffff[tttttt]fffff return addr >= start || addr <= end; // ttttt]ffffff[ttttt }; const u64 start_address_page = start_address & ~u64(0xFFF); const u64 end_address = start_address + size - 1; u64 current_address = start_address_page; do { generate_page(current_address); current_address += 0x1000; } while (is_in_range(current_address, start_address_page, end_address) && current_address != start_address_page); return true; } bool A64Unicorn::MemoryWriteHook(uc_engine* /*uc*/, uc_mem_type /*type*/, u64 start_address, int size, u64 value, void* user_data) { auto* this_ = static_cast(user_data); switch (size) { case 1: this_->testenv.MemoryWrite8(start_address, static_cast(value)); break; case 2: this_->testenv.MemoryWrite16(start_address, static_cast(value)); break; case 4: this_->testenv.MemoryWrite32(start_address, static_cast(value)); break; case 8: this_->testenv.MemoryWrite64(start_address, value); break; default: UNREACHABLE(); } return true; }