/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include "backend_x64/abi.h" #include "backend_x64/block_of_code.h" #include "backend_x64/emit_x64.h" #include "common/assert.h" #include "common/common_types.h" #include "common/fp/fpcr.h" #include "common/fp/fpsr.h" #include "common/fp/op.h" #include "common/fp/rounding_mode.h" #include "common/fp/util.h" #include "common/mp/cartesian_product.h" #include "common/mp/integer.h" #include "common/mp/list.h" #include "common/mp/lut.h" #include "common/mp/to_tuple.h" #include "common/mp/vlift.h" #include "common/mp/vllift.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/microinstruction.h" #include "frontend/ir/opcodes.h" namespace Dynarmic::BackendX64 { using namespace Xbyak::util; namespace mp = Dynarmic::Common::mp; constexpr u64 f32_negative_zero = 0x80000000u; constexpr u64 f32_nan = 0x7fc00000u; constexpr u64 f32_non_sign_mask = 0x7fffffffu; constexpr u64 f64_negative_zero = 0x8000000000000000u; constexpr u64 f64_nan = 0x7ff8000000000000u; constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu; constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu; constexpr u64 f64_min_s32 = 0xc1e0000000000000u; // -2147483648 as a double constexpr u64 f64_max_s32 = 0x41dfffffffc00000u; // 2147483647 as a double constexpr u64 f64_min_u32 = 0x0000000000000000u; // 0 as a double constexpr u64 f64_max_u32 = 0x41efffffffe00000u; // 4294967295 as a double constexpr u64 f64_min_s64 = 0xc3e0000000000000u; // -2^63 as a double constexpr u64 f64_max_s64_lim = 0x43e0000000000000u; // 2^63 as a double (actual maximum unrepresentable) constexpr u64 f64_min_u64 = 0x0000000000000000u; // 0 as a double constexpr u64 f64_max_u64_lim = 0x43f0000000000000u; // 2^64 as a double (actual maximum unrepresentable) static void DenormalsAreZero32(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { Xbyak::Label end; // We need to report back whether we've found a denormal on input. // SSE doesn't do this for us when SSE's DAZ is enabled. code.movd(gpr_scratch, xmm_value); code.and_(gpr_scratch, u32(0x7FFFFFFF)); code.sub(gpr_scratch, u32(1)); code.cmp(gpr_scratch, u32(0x007FFFFE)); code.ja(end); code.pxor(xmm_value, xmm_value); code.mov(dword[r15 + code.GetJitStateInfo().offsetof_FPSCR_IDC], u32(1 << 7)); code.L(end); } static void DenormalsAreZero64(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { Xbyak::Label end; auto mask = code.MConst(xword, f64_non_sign_mask); mask.setBit(64); auto penult_denormal = code.MConst(xword, f64_penultimate_positive_denormal); penult_denormal.setBit(64); code.movq(gpr_scratch, xmm_value); code.and_(gpr_scratch, mask); code.sub(gpr_scratch, u32(1)); code.cmp(gpr_scratch, penult_denormal); code.ja(end); code.pxor(xmm_value, xmm_value); code.mov(dword[r15 + code.GetJitStateInfo().offsetof_FPSCR_IDC], u32(1 << 7)); code.L(end); } static void FlushToZero32(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { Xbyak::Label end; code.movd(gpr_scratch, xmm_value); code.and_(gpr_scratch, u32(0x7FFFFFFF)); code.sub(gpr_scratch, u32(1)); code.cmp(gpr_scratch, u32(0x007FFFFE)); code.ja(end); code.pxor(xmm_value, xmm_value); code.mov(dword[r15 + code.GetJitStateInfo().offsetof_FPSCR_UFC], u32(1 << 3)); code.L(end); } static void FlushToZero64(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { Xbyak::Label end; auto mask = code.MConst(xword, f64_non_sign_mask); mask.setBit(64); auto penult_denormal = code.MConst(xword, f64_penultimate_positive_denormal); penult_denormal.setBit(64); code.movq(gpr_scratch, xmm_value); code.and_(gpr_scratch, mask); code.sub(gpr_scratch, u32(1)); code.cmp(gpr_scratch, penult_denormal); code.ja(end); code.pxor(xmm_value, xmm_value); code.mov(dword[r15 + code.GetJitStateInfo().offsetof_FPSCR_UFC], u32(1 << 3)); code.L(end); } static void ZeroIfNaN64(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch) { code.pxor(xmm_scratch, xmm_scratch); code.cmpordsd(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN) code.pand(xmm_value, xmm_scratch); } static void PreProcessNaNs32(BlockOfCode& code, Xbyak::Xmm a, Xbyak::Xmm b, Xbyak::Label& end) { Xbyak::Label nan; code.ucomiss(a, b); code.jp(nan, code.T_NEAR); code.SwitchToFarCode(); code.L(nan); code.sub(rsp, 8); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.xor_(code.ABI_PARAM1.cvt32(), code.ABI_PARAM1.cvt32()); code.xor_(code.ABI_PARAM2.cvt32(), code.ABI_PARAM2.cvt32()); code.movd(code.ABI_PARAM1.cvt32(), a); code.movd(code.ABI_PARAM2.cvt32(), b); code.CallFunction(static_cast([](u32 a, u32 b) -> u32 { return *FP::ProcessNaNs(a, b); })); code.movd(a, code.ABI_RETURN.cvt32()); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.add(rsp, 8); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); } template static void PreProcessNaNs32(BlockOfCode& code, Xbyak::Xmm a, Xbyak::Xmm b, Xbyak::Xmm c, Xbyak::Label& end, NaNHandler nan_handler) { Xbyak::Label nan; code.ucomiss(a, b); code.jp(nan, code.T_NEAR); code.ucomiss(c, c); code.jp(nan, code.T_NEAR); code.SwitchToFarCode(); code.L(nan); code.sub(rsp, 8); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.xor_(code.ABI_PARAM1.cvt32(), code.ABI_PARAM1.cvt32()); code.xor_(code.ABI_PARAM2.cvt32(), code.ABI_PARAM2.cvt32()); code.xor_(code.ABI_PARAM3.cvt32(), code.ABI_PARAM3.cvt32()); code.movd(code.ABI_PARAM1.cvt32(), a); code.movd(code.ABI_PARAM2.cvt32(), b); code.movd(code.ABI_PARAM3.cvt32(), c); code.CallFunction(static_cast(nan_handler)); code.movd(a, code.ABI_RETURN.cvt32()); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.add(rsp, 8); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); } static void PostProcessNaNs32(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm tmp) { code.movaps(tmp, result); code.cmpunordps(tmp, tmp); code.pslld(tmp, 31); code.xorps(result, tmp); } static void DefaultNaN32(BlockOfCode& code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code.ucomiss(xmm_value, xmm_value); code.jnp(end); code.movaps(xmm_value, code.MConst(xword, f32_nan)); code.L(end); } static void PreProcessNaNs64(BlockOfCode& code, Xbyak::Xmm a, Xbyak::Xmm b, Xbyak::Label& end) { Xbyak::Label nan; code.ucomisd(a, b); code.jp(nan, code.T_NEAR); code.SwitchToFarCode(); code.L(nan); code.sub(rsp, 8); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.movq(code.ABI_PARAM1, a); code.movq(code.ABI_PARAM2, b); code.CallFunction(static_cast([](u64 a, u64 b) -> u64 { return *FP::ProcessNaNs(a, b); })); code.movq(a, code.ABI_RETURN); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.add(rsp, 8); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); } template static void PreProcessNaNs64(BlockOfCode& code, Xbyak::Xmm a, Xbyak::Xmm b, Xbyak::Xmm c, Xbyak::Label& end, NaNHandler nan_handler) { Xbyak::Label nan; code.ucomisd(a, b); code.jp(nan, code.T_NEAR); code.ucomisd(c, c); code.jp(nan, code.T_NEAR); code.SwitchToFarCode(); code.L(nan); code.sub(rsp, 8); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.movq(code.ABI_PARAM1, a); code.movq(code.ABI_PARAM2, b); code.movq(code.ABI_PARAM3, c); code.CallFunction(static_cast(nan_handler)); code.movq(a, code.ABI_RETURN); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(a.getIdx())); code.add(rsp, 8); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); } static void PostProcessNaNs64(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm tmp) { code.movaps(tmp, result); code.cmpunordpd(tmp, tmp); code.psllq(tmp, 63); code.xorps(result, tmp); } static void DefaultNaN64(BlockOfCode& code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code.ucomisd(xmm_value, xmm_value); code.jnp(end); code.movaps(xmm_value, code.MConst(xword, f64_nan)); code.L(end); } static Xbyak::Label ProcessNaN32(BlockOfCode& code, Xbyak::Xmm a) { Xbyak::Label nan, end; code.ucomiss(a, a); code.jp(nan, code.T_NEAR); code.SwitchToFarCode(); code.L(nan); code.orps(a, code.MConst(xword, 0x00400000)); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); return end; } static Xbyak::Label ProcessNaN64(BlockOfCode& code, Xbyak::Xmm a) { Xbyak::Label nan, end; code.ucomisd(a, a); code.jp(nan, code.T_NEAR); code.SwitchToFarCode(); code.L(nan); code.orps(a, code.MConst(xword, 0x0008'0000'0000'0000)); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); return end; } template static void FPThreeOp32(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, [[maybe_unused]] PreprocessFunction preprocess, Function fn) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Label end; Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]); Xbyak::Reg32 gpr_scratch = ctx.reg_alloc.ScratchGpr().cvt32(); if constexpr(!std::is_same_v) { preprocess(result, operand, gpr_scratch, end); } if (ctx.FPSCR_FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, operand, gpr_scratch); } if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) { PreProcessNaNs32(code, result, operand, end); } if constexpr (std::is_member_function_pointer_v) { (code.*fn)(result, operand); } else { fn(result, operand); } if (ctx.FPSCR_FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN32(code, result); } else if (ctx.AccurateNaN()) { PostProcessNaNs32(code, result, operand); } code.L(end); ctx.reg_alloc.DefineValue(inst, result); } template static void FPThreeOp64(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, [[maybe_unused]] PreprocessFunction preprocess, Function fn) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Label end; Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]); Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr(); if constexpr(!std::is_same_v) { preprocess(result, operand, gpr_scratch, end); } if (ctx.FPSCR_FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, operand, gpr_scratch); } if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) { PreProcessNaNs64(code, result, operand, end); } if constexpr (std::is_member_function_pointer_v) { (code.*fn)(result, operand); } else { fn(result, operand); } if (ctx.FPSCR_FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN64(code, result); } else if (ctx.AccurateNaN()) { PostProcessNaNs64(code, result, operand); } code.L(end); ctx.reg_alloc.DefineValue(inst, result); } template static void FPThreeOp32(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) { FPThreeOp32(code, ctx, inst, nullptr, fn); } template static void FPThreeOp64(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) { FPThreeOp64(code, ctx, inst, nullptr, fn); } template static void FPTwoOp32(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Label end; Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg32 gpr_scratch = ctx.reg_alloc.ScratchGpr().cvt32(); if (ctx.FPSCR_FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); } if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) { end = ProcessNaN32(code, result); } if constexpr (std::is_member_function_pointer_v) { (code.*fn)(result, result); } else { fn(result); } if (ctx.FPSCR_FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN32(code, result); } else if (ctx.AccurateNaN()) { PostProcessNaNs32(code, result, ctx.reg_alloc.ScratchXmm()); } code.L(end); ctx.reg_alloc.DefineValue(inst, result); } template static void FPTwoOp64(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Label end; Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr(); if (ctx.FPSCR_FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) { end = ProcessNaN64(code, result); } if constexpr (std::is_member_function_pointer_v) { (code.*fn)(result, result); } else { fn(result); } if (ctx.FPSCR_FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN64(code, result); } else if (ctx.AccurateNaN()) { PostProcessNaNs64(code, result, ctx.reg_alloc.ScratchXmm()); } code.L(end); ctx.reg_alloc.DefineValue(inst, result); } template static void FPFourOp32(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn, NaNHandler nan_handler) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Label end; Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm operand2 = ctx.reg_alloc.UseScratchXmm(args[1]); Xbyak::Xmm operand3 = ctx.reg_alloc.UseScratchXmm(args[2]); Xbyak::Reg32 gpr_scratch = ctx.reg_alloc.ScratchGpr().cvt32(); if (ctx.FPSCR_FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, operand2, gpr_scratch); DenormalsAreZero32(code, operand3, gpr_scratch); } if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) { PreProcessNaNs32(code, result, operand2, operand3, end, nan_handler); } fn(result, operand2, operand3); if (ctx.FPSCR_FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN32(code, result); } else if (ctx.AccurateNaN()) { PostProcessNaNs32(code, result, operand2); } code.L(end); ctx.reg_alloc.DefineValue(inst, result); } template static void FPFourOp64(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn, NaNHandler nan_handler) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Label end; Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm operand2 = ctx.reg_alloc.UseScratchXmm(args[1]); Xbyak::Xmm operand3 = ctx.reg_alloc.UseScratchXmm(args[2]); Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr(); if (ctx.FPSCR_FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, operand2, gpr_scratch); DenormalsAreZero64(code, operand3, gpr_scratch); } if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) { PreProcessNaNs64(code, result, operand2, operand3, end, nan_handler); } fn(result, operand2, operand3); if (ctx.FPSCR_FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN64(code, result); } else if (ctx.AccurateNaN()) { PostProcessNaNs64(code, result, operand2); } code.L(end); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPAbs32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); code.pand(result, code.MConst(xword, f32_non_sign_mask)); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPAbs64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); code.pand(result, code.MConst(xword, f64_non_sign_mask)); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPNeg32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); code.pxor(result, code.MConst(xword, f32_negative_zero)); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPNeg64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); code.pxor(result, code.MConst(xword, f64_negative_zero)); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPAdd32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, &Xbyak::CodeGenerator::addss); } void EmitX64::EmitFPAdd64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, &Xbyak::CodeGenerator::addsd); } void EmitX64::EmitFPDiv32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, &Xbyak::CodeGenerator::divss); } void EmitX64::EmitFPDiv64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, &Xbyak::CodeGenerator::divsd); } void EmitX64::EmitFPMax32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand){ Xbyak::Label normal, end; code.ucomiss(result, operand); code.jnz(normal); if (!ctx.AccurateNaN()) { Xbyak::Label notnan; code.jnp(notnan); code.addss(result, operand); code.jmp(end); code.L(notnan); } code.andps(result, operand); code.jmp(end); code.L(normal); code.maxss(result, operand); code.L(end); }); } void EmitX64::EmitFPMax64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand){ Xbyak::Label normal, end; code.ucomisd(result, operand); code.jnz(normal); if (!ctx.AccurateNaN()) { Xbyak::Label notnan; code.jnp(notnan); code.addsd(result, operand); code.jmp(end); code.L(notnan); } code.andps(result, operand); code.jmp(end); code.L(normal); code.maxsd(result, operand); code.L(end); }); } void EmitX64::EmitFPMaxNumeric32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand, Xbyak::Reg32 scratch, Xbyak::Label& end){ Xbyak::Label normal, normal_or_equal, result_is_result; code.ucomiss(result, operand); code.jnp(normal_or_equal); // If operand == QNaN, result = result. code.movd(scratch, operand); code.shl(scratch, 1); code.cmp(scratch, 0xff800000u); code.jae(result_is_result); // If operand == SNaN, let usual NaN code handle it. code.cmp(scratch, 0xff000000u); code.ja(normal); // If result == SNaN, && operand != NaN, result = result. code.movd(scratch, result); code.shl(scratch, 1); code.cmp(scratch, 0xff800000u); code.jnae(result_is_result); // If result == QNaN && operand != NaN, result = operand. code.movaps(result, operand); code.jmp(end, code.T_NEAR); code.L(result_is_result); code.movaps(operand, result); code.jmp(normal); code.L(normal_or_equal); code.jnz(normal); code.andps(operand, result); code.L(normal); }, &Xbyak::CodeGenerator::maxss); } void EmitX64::EmitFPMaxNumeric64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand, Xbyak::Reg64 scratch, Xbyak::Label& end){ Xbyak::Label normal, normal_or_equal, result_is_result; code.ucomisd(result, operand); code.jnp(normal_or_equal); // If operand == QNaN, result = result. code.movq(scratch, operand); code.shl(scratch, 1); code.cmp(scratch, code.MConst(qword, 0xfff0'0000'0000'0000u)); code.jae(result_is_result); // If operand == SNaN, let usual NaN code handle it. code.cmp(scratch, code.MConst(qword, 0xffe0'0000'0000'0000u)); code.ja(normal); // If result == SNaN, && operand != NaN, result = result. code.movq(scratch, result); code.shl(scratch, 1); code.cmp(scratch, code.MConst(qword, 0xfff0'0000'0000'0000u)); code.jnae(result_is_result); // If result == QNaN && operand != NaN, result = operand. code.movaps(result, operand); code.jmp(end, code.T_NEAR); code.L(result_is_result); code.movaps(operand, result); code.jmp(normal); code.L(normal_or_equal); code.jnz(normal); code.andps(operand, result); code.L(normal); }, &Xbyak::CodeGenerator::maxsd); } void EmitX64::EmitFPMin32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand){ Xbyak::Label normal, end; code.ucomiss(result, operand); code.jnz(normal); code.orps(result, operand); code.jmp(end); code.L(normal); code.minss(result, operand); code.L(end); }); } void EmitX64::EmitFPMin64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand){ Xbyak::Label normal, end; code.ucomisd(result, operand); code.jnz(normal); code.orps(result, operand); code.jmp(end); code.L(normal); code.minsd(result, operand); code.L(end); }); } void EmitX64::EmitFPMinNumeric32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand, Xbyak::Reg32 scratch, Xbyak::Label& end){ Xbyak::Label normal, normal_or_equal, result_is_result; code.ucomiss(result, operand); code.jnp(normal_or_equal); // If operand == QNaN, result = result. code.movd(scratch, operand); code.shl(scratch, 1); code.cmp(scratch, 0xff800000u); code.jae(result_is_result); // If operand == SNaN, let usual NaN code handle it. code.cmp(scratch, 0xff000000u); code.ja(normal); // If result == SNaN, && operand != NaN, result = result. code.movd(scratch, result); code.shl(scratch, 1); code.cmp(scratch, 0xff800000u); code.jnae(result_is_result); // If result == QNaN && operand != NaN, result = operand. code.movaps(result, operand); code.jmp(end, code.T_NEAR); code.L(result_is_result); code.movaps(operand, result); code.jmp(normal); code.L(normal_or_equal); code.jnz(normal); code.orps(operand, result); code.L(normal); }, &Xbyak::CodeGenerator::minss); } void EmitX64::EmitFPMinNumeric64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand, Xbyak::Reg64 scratch, Xbyak::Label& end){ Xbyak::Label normal, normal_or_equal, result_is_result; code.ucomisd(result, operand); code.jnp(normal_or_equal); // If operand == QNaN, result = result. code.movq(scratch, operand); code.shl(scratch, 1); code.cmp(scratch, code.MConst(qword, 0xfff0'0000'0000'0000u)); code.jae(result_is_result); // If operand == SNaN, let usual NaN code handle it. code.cmp(scratch, code.MConst(qword, 0xffe0'0000'0000'0000u)); code.ja(normal); // If result == SNaN, && operand != NaN, result = result. code.movq(scratch, result); code.shl(scratch, 1); code.cmp(scratch, code.MConst(qword, 0xfff0'0000'0000'0000u)); code.jnae(result_is_result); // If result == QNaN && operand != NaN, result = operand. code.movaps(result, operand); code.jmp(end, code.T_NEAR); code.L(result_is_result); code.movaps(operand, result); code.jmp(normal); code.L(normal_or_equal); code.jnz(normal); code.orps(operand, result); code.L(normal); }, &Xbyak::CodeGenerator::minsd); } void EmitX64::EmitFPMul32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, &Xbyak::CodeGenerator::mulss); } void EmitX64::EmitFPMul64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, &Xbyak::CodeGenerator::mulsd); } template static void EmitFPMulAddFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.HostCall(inst, args[0], args[1], args[2]); code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR()); #ifdef _WIN32 code.sub(rsp, 16 + ABI_SHADOW_SPACE); code.lea(rax, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]); code.mov(qword[rsp + ABI_SHADOW_SPACE], rax); code.CallFunction(&FP::FPMulAdd); code.add(rsp, 16 + ABI_SHADOW_SPACE); #else code.lea(code.ABI_PARAM5, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]); code.CallFunction(&FP::FPMulAdd); #endif } void EmitX64::EmitFPMulAdd32(EmitContext& ctx, IR::Inst* inst) { if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) { FPFourOp32(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand2, Xbyak::Xmm operand3) { code.vfmadd231ss(result, operand2, operand3); }, [](u32 a, u32 b, u32 c) -> u32 { if (FP::IsQNaN(a) && ((FP::IsInf(b) && FP::IsZero(c)) || (FP::IsZero(b) && FP::IsInf(c)))) { return f32_nan; } return *FP::ProcessNaNs(a, b, c); }); return; } EmitFPMulAddFallback(code, ctx, inst); } void EmitX64::EmitFPMulAdd64(EmitContext& ctx, IR::Inst* inst) { if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) { FPFourOp64(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand2, Xbyak::Xmm operand3) { code.vfmadd231sd(result, operand2, operand3); }, [](u64 a, u64 b, u64 c) -> u64 { if (FP::IsQNaN(a) && ((FP::IsInf(b) && FP::IsZero(c)) || (FP::IsZero(b) && FP::IsInf(c)))) { return f64_nan; } return *FP::ProcessNaNs(a, b, c); }); return; } EmitFPMulAddFallback(code, ctx, inst); } static void EmitFPRound(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, size_t fsize) { const auto rounding = static_cast(inst->GetArg(1).GetU8()); const bool exact = inst->GetArg(2).GetU1(); if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE41) && rounding != FP::RoundingMode::ToNearest_TieAwayFromZero && !exact) { const int round_imm = [&]{ switch (rounding) { case FP::RoundingMode::ToNearest_TieEven: return 0b00; case FP::RoundingMode::TowardsPlusInfinity: return 0b10; case FP::RoundingMode::TowardsMinusInfinity: return 0b01; case FP::RoundingMode::TowardsZero: return 0b11; default: UNREACHABLE(); } return 0; }(); if (fsize == 64) { FPTwoOp64(code, ctx, inst, [&](Xbyak::Xmm result) { code.roundsd(result, result, round_imm); }); } else { FPTwoOp32(code, ctx, inst, [&](Xbyak::Xmm result) { code.roundss(result, result, round_imm); }); } return; } using fsize_list = mp::list, mp::vlift>; using rounding_list = mp::list< std::integral_constant, std::integral_constant, std::integral_constant, std::integral_constant, std::integral_constant >; using exact_list = mp::list, mp::vlift>; using key_type = std::tuple; using value_type = u64(*)(u64, FP::FPSR&, FP::FPCR); static const auto lut = mp::GenerateLookupTableFromList( [](auto args) { return std::pair{ mp::to_tuple, static_cast( [](u64 input, FP::FPSR& fpsr, FP::FPCR fpcr) { constexpr auto t = mp::to_tuple; constexpr size_t fsize = std::get<0>(t); constexpr FP::RoundingMode rounding_mode = std::get<1>(t); constexpr bool exact = std::get<2>(t); using InputSize = mp::unsigned_integer_of_size; return FP::FPRoundInt(static_cast(input), fpcr, rounding_mode, exact, fpsr); } ) }; }, mp::cartesian_product{} ); auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.HostCall(inst, args[0]); code.lea(code.ABI_PARAM2, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]); code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR()); code.CallFunction(lut.at(std::make_tuple(fsize, rounding, exact))); } void EmitX64::EmitFPRoundInt32(EmitContext& ctx, IR::Inst* inst) { EmitFPRound(code, ctx, inst, 32); } void EmitX64::EmitFPRoundInt64(EmitContext& ctx, IR::Inst* inst) { EmitFPRound(code, ctx, inst, 64); } template static void EmitFPRSqrtEstimate(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.HostCall(inst, args[0]); code.mov(code.ABI_PARAM2.cvt32(), ctx.FPCR()); code.lea(code.ABI_PARAM3, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]); code.CallFunction(&FP::FPRSqrtEstimate); } void EmitX64::EmitFPRSqrtEstimate32(EmitContext& ctx, IR::Inst* inst) { EmitFPRSqrtEstimate(code, ctx, inst); } void EmitX64::EmitFPRSqrtEstimate64(EmitContext& ctx, IR::Inst* inst) { EmitFPRSqrtEstimate(code, ctx, inst); } void EmitX64::EmitFPSqrt32(EmitContext& ctx, IR::Inst* inst) { FPTwoOp32(code, ctx, inst, &Xbyak::CodeGenerator::sqrtss); } void EmitX64::EmitFPSqrt64(EmitContext& ctx, IR::Inst* inst) { FPTwoOp64(code, ctx, inst, &Xbyak::CodeGenerator::sqrtsd); } void EmitX64::EmitFPSub32(EmitContext& ctx, IR::Inst* inst) { FPThreeOp32(code, ctx, inst, &Xbyak::CodeGenerator::subss); } void EmitX64::EmitFPSub64(EmitContext& ctx, IR::Inst* inst) { FPThreeOp64(code, ctx, inst, &Xbyak::CodeGenerator::subsd); } static Xbyak::Reg64 SetFpscrNzcvFromFlags(BlockOfCode& code, EmitContext& ctx) { ctx.reg_alloc.ScratchGpr({HostLoc::RCX}); // shifting requires use of cl Xbyak::Reg64 nzcv = ctx.reg_alloc.ScratchGpr(); // x64 flags ARM flags // ZF PF CF NZCV // Unordered 1 1 1 0011 // Greater than 0 0 0 0010 // Less than 0 0 1 1000 // Equal 1 0 0 0110 // // Thus we can take use ZF:CF as an index into an array like so: // x64 ARM ARM as x64 // ZF:CF NZCV NZ-----C-------V // 0 0010 0000000100000000 = 0x0100 // 1 1000 1000000000000000 = 0x8000 // 2 0110 0100000100000000 = 0x4100 // 3 0011 0000000100000001 = 0x0101 code.mov(nzcv, 0x0101'4100'8000'0100); code.sete(cl); code.rcl(cl, 5); // cl = ZF:CF:0000 code.shr(nzcv, cl); return nzcv; } void EmitX64::EmitFPCompare32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm reg_a = ctx.reg_alloc.UseXmm(args[0]); Xbyak::Xmm reg_b = ctx.reg_alloc.UseXmm(args[1]); bool exc_on_qnan = args[2].GetImmediateU1(); if (exc_on_qnan) { code.comiss(reg_a, reg_b); } else { code.ucomiss(reg_a, reg_b); } Xbyak::Reg64 nzcv = SetFpscrNzcvFromFlags(code, ctx); ctx.reg_alloc.DefineValue(inst, nzcv); } void EmitX64::EmitFPCompare64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm reg_a = ctx.reg_alloc.UseXmm(args[0]); Xbyak::Xmm reg_b = ctx.reg_alloc.UseXmm(args[1]); bool exc_on_qnan = args[2].GetImmediateU1(); if (exc_on_qnan) { code.comisd(reg_a, reg_b); } else { code.ucomisd(reg_a, reg_b); } Xbyak::Reg64 nzcv = SetFpscrNzcvFromFlags(code, ctx); ctx.reg_alloc.DefineValue(inst, nzcv); } void EmitX64::EmitFPSingleToDouble(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr(); if (ctx.FPSCR_FTZ()) { DenormalsAreZero32(code, result, gpr_scratch.cvt32()); } code.cvtss2sd(result, result); if (ctx.FPSCR_FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (ctx.FPSCR_DN()) { DefaultNaN64(code, result); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPDoubleToSingle(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr(); if (ctx.FPSCR_FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } code.cvtsd2ss(result, result); if (ctx.FPSCR_FTZ()) { FlushToZero32(code, result, gpr_scratch.cvt32()); } if (ctx.FPSCR_DN()) { DefaultNaN32(code, result); } ctx.reg_alloc.DefineValue(inst, result); } static void EmitFPToFixed(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, size_t fsize, bool unsigned_, size_t isize) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const size_t fbits = args[1].GetImmediateU8(); const auto rounding = static_cast(args[2].GetImmediateU8()); if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE41) && rounding != FP::RoundingMode::ToNearest_TieAwayFromZero){ const Xbyak::Xmm src = ctx.reg_alloc.UseScratchXmm(args[0]); const int round_imm = [&]{ switch (rounding) { case FP::RoundingMode::ToNearest_TieEven: default: return 0b00; case FP::RoundingMode::TowardsPlusInfinity: return 0b10; case FP::RoundingMode::TowardsMinusInfinity: return 0b01; case FP::RoundingMode::TowardsZero: return 0b11; } }(); const Xbyak::Xmm scratch = ctx.reg_alloc.ScratchXmm(); const Xbyak::Reg64 result = ctx.reg_alloc.ScratchGpr().cvt64(); if (fsize == 64) { if (fbits != 0) { const u64 scale_factor = static_cast((fbits + 1023) << 52); code.mulsd(src, code.MConst(xword, scale_factor)); } code.roundsd(src, src, round_imm); ZeroIfNaN64(code, src, scratch); } else { if (fbits != 0) { const u32 scale_factor = static_cast((fbits + 127) << 23); code.mulss(src, code.MConst(xword, scale_factor)); } code.roundss(src, src, round_imm); code.cvtss2sd(src, src); ZeroIfNaN64(code, src, scratch); } if (isize == 64) { Xbyak::Label saturate_max, end; code.maxsd(src, code.MConst(xword, unsigned_ ? f64_min_u64 : f64_min_s64)); code.movsd(scratch, code.MConst(xword, unsigned_ ? f64_max_u64_lim : f64_max_s64_lim)); code.comisd(scratch, src); code.jna(saturate_max, code.T_NEAR); if (unsigned_) { Xbyak::Label below_max; code.movsd(scratch, code.MConst(xword, f64_max_s64_lim)); code.comisd(src, scratch); code.jb(below_max); code.subsd(src, scratch); code.cvttsd2si(result, src); code.btc(result, 63); code.jmp(end); code.L(below_max); } code.cvttsd2si(result, src); // 64 bit gpr code.L(end); code.SwitchToFarCode(); code.L(saturate_max); code.mov(result, unsigned_ ? 0xFFFF'FFFF'FFFF'FFFF : 0x7FFF'FFFF'FFFF'FFFF); code.jmp(end, code.T_NEAR); code.SwitchToNearCode(); } else { code.minsd(src, code.MConst(xword, unsigned_ ? f64_max_u32 : f64_max_s32)); code.maxsd(src, code.MConst(xword, unsigned_ ? f64_min_u32 : f64_min_s32)); code.cvttsd2si(result, src); // 64 bit gpr } ctx.reg_alloc.DefineValue(inst, result); return; } using fsize_list = mp::list, mp::vlift>; using unsigned_list = mp::list, mp::vlift>; using isize_list = mp::list, mp::vlift>; using rounding_list = mp::list< std::integral_constant, std::integral_constant, std::integral_constant, std::integral_constant, std::integral_constant >; using key_type = std::tuple; using value_type = u64(*)(u64, u8, FP::FPSR&, FP::FPCR); static const auto lut = mp::GenerateLookupTableFromList( [](auto args) { return std::pair{ mp::to_tuple, static_cast( [](u64 input, u8 fbits, FP::FPSR& fpsr, FP::FPCR fpcr) { constexpr auto t = mp::to_tuple; constexpr size_t fsize = std::get<0>(t); constexpr bool unsigned_ = std::get<1>(t); constexpr size_t isize = std::get<2>(t); constexpr FP::RoundingMode rounding_mode = std::get<3>(t); using InputSize = mp::unsigned_integer_of_size; return FP::FPToFixed(isize, static_cast(input), fbits, unsigned_, fpcr, rounding_mode, fpsr); } ) }; }, mp::cartesian_product{} ); ctx.reg_alloc.HostCall(inst, args[0], args[1]); code.lea(code.ABI_PARAM3, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]); code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR()); code.CallFunction(lut.at(std::make_tuple(fsize, unsigned_, isize, rounding))); } void EmitX64::EmitFPDoubleToFixedS32(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 64, false, 32); } void EmitX64::EmitFPDoubleToFixedS64(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 64, false, 64); } void EmitX64::EmitFPDoubleToFixedU32(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 64, true, 32); } void EmitX64::EmitFPDoubleToFixedU64(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 64, true, 64); } void EmitX64::EmitFPSingleToFixedS32(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 32, false, 32); } void EmitX64::EmitFPSingleToFixedS64(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 32, false, 64); } void EmitX64::EmitFPSingleToFixedU32(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 32, true, 32); } void EmitX64::EmitFPSingleToFixedU64(EmitContext& ctx, IR::Inst* inst) { EmitFPToFixed(code, ctx, inst, 32, true, 64); } void EmitX64::EmitFPS32ToSingle(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 from = ctx.reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm(); bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); code.cvtsi2ss(to, from); ctx.reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPU32ToSingle(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm(); const bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) { const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]); code.vcvtusi2ss(to, to, from.cvt32()); } else { // We are using a 64-bit GPR register to ensure we don't end up treating the input as signed const Xbyak::Reg64 from = ctx.reg_alloc.UseScratchGpr(args[0]); code.mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary code.cvtsi2ss(to, from); } ctx.reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPS32ToDouble(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 from = ctx.reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm(); bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); code.cvtsi2sd(to, from); ctx.reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPS64ToDouble(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]); const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); const bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); code.cvtsi2sd(result, from); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPS64ToSingle(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]); const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); const bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); code.cvtsi2ss(result, from); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPU32ToDouble(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm(); const bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) { const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]); code.vcvtusi2sd(to, to, from.cvt32()); } else { // We are using a 64-bit GPR register to ensure we don't end up treating the input as signed const Xbyak::Reg64 from = ctx.reg_alloc.UseScratchGpr(args[0]); code.mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary code.cvtsi2sd(to, from); } ctx.reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPU64ToDouble(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]); const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); const bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) { code.vcvtusi2sd(result, result, from); } else { const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm(); code.movq(tmp, from); code.punpckldq(tmp, code.MConst(xword, 0x4530000043300000, 0)); code.subpd(tmp, code.MConst(xword, 0x4330000000000000, 0x4530000000000000)); code.pshufd(result, tmp, 0b01001110); code.addpd(result, tmp); if (ctx.FPSCR_RMode() == FP::RoundingMode::TowardsMinusInfinity) { code.pand(result, code.MConst(xword, f64_non_sign_mask)); } } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPU64ToSingle(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); const bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) { const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]); code.vcvtusi2ss(result, result, from); } else { const Xbyak::Reg64 from = ctx.reg_alloc.UseScratchGpr(args[0]); code.pxor(result, result); Xbyak::Label negative; Xbyak::Label end; code.test(from, from); code.js(negative); code.cvtsi2ss(result, from); code.jmp(end); code.L(negative); const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr(); code.mov(tmp, from); code.shr(tmp, 1); code.and_(from.cvt32(), 1); code.or_(from, tmp); code.cvtsi2ss(result, from); code.addss(result, result); code.L(end); } ctx.reg_alloc.DefineValue(inst, result); } } // namespace Dynarmic::BackendX64