/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include "backend_x64/block_of_code.h" #include "backend_x64/emit_x64.h" #include "common/assert.h" #include "common/common_types.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/microinstruction.h" #include "frontend/ir/opcodes.h" namespace Dynarmic { namespace BackendX64 { using namespace Xbyak::util; void EmitX64::EmitPack2x32To1x64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 lo = ctx.reg_alloc.UseScratchGpr(args[0]); Xbyak::Reg64 hi = ctx.reg_alloc.UseScratchGpr(args[1]); code->shl(hi, 32); code->mov(lo.cvt32(), lo.cvt32()); // Zero extend to 64-bits code->or_(lo, hi); ctx.reg_alloc.DefineValue(inst, lo); } void EmitX64::EmitLeastSignificantWord(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitMostSignificantWord(EmitContext& ctx, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->shr(result, 32); if (carry_inst) { Xbyak::Reg64 carry = ctx.reg_alloc.ScratchGpr(); code->setc(carry.cvt8()); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitLeastSignificantHalf(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitLeastSignificantByte(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitMostSignificantBit(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); // TODO: Flag optimization code->shr(result, 31); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitIsZero32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitIsZero64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitTestBit(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); ASSERT(args[1].IsImmediate()); // TODO: Flag optimization code->bt(result, args[1].GetImmediateU8()); code->setc(result.cvt8()); ctx.reg_alloc.DefineValue(inst, result); } static void EmitConditionalSelect(BlockOfCode* code, EmitContext& ctx, IR::Inst* inst, int bitsize) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 nzcv = ctx.reg_alloc.ScratchGpr({HostLoc::RAX}).cvt32(); Xbyak::Reg then_ = ctx.reg_alloc.UseGpr(args[1]).changeBit(bitsize); Xbyak::Reg else_ = ctx.reg_alloc.UseScratchGpr(args[2]).changeBit(bitsize); code->mov(nzcv, dword[r15 + code->GetJitStateInfo().offsetof_CPSR_nzcv]); // TODO: Flag optimization code->shr(nzcv, 28); code->imul(nzcv, nzcv, 0b00010000'10000001); code->and_(nzcv.cvt8(), 1); code->add(nzcv.cvt8(), 0x7F); // restore OF code->sahf(); // restore SF, ZF, CF switch (args[0].GetImmediateCond()) { case IR::Cond::EQ: //z code->cmovz(else_, then_); break; case IR::Cond::NE: //!z code->cmovnz(else_, then_); break; case IR::Cond::CS: //c code->cmovc(else_, then_); break; case IR::Cond::CC: //!c code->cmovnc(else_, then_); break; case IR::Cond::MI: //n code->cmovs(else_, then_); break; case IR::Cond::PL: //!n code->cmovns(else_, then_); break; case IR::Cond::VS: //v code->cmovo(else_, then_); break; case IR::Cond::VC: //!v code->cmovno(else_, then_); break; case IR::Cond::HI: //c & !z code->cmc(); code->cmova(else_, then_); break; case IR::Cond::LS: //!c | z code->cmc(); code->cmovna(else_, then_); break; case IR::Cond::GE: // n == v code->cmovge(else_, then_); break; case IR::Cond::LT: // n != v code->cmovl(else_, then_); break; case IR::Cond::GT: // !z & (n == v) code->cmovg(else_, then_); break; case IR::Cond::LE: // z | (n != v) code->cmovle(else_, then_); break; case IR::Cond::AL: case IR::Cond::NV: code->mov(else_, then_); break; default: ASSERT_MSG(false, "Invalid cond %zu", static_cast(args[0].GetImmediateCond())); } ctx.reg_alloc.DefineValue(inst, else_); } void EmitX64::EmitConditionalSelect32(EmitContext& ctx, IR::Inst* inst) { EmitConditionalSelect(code, ctx, inst, 32); } void EmitX64::EmitConditionalSelect64(EmitContext& ctx, IR::Inst* inst) { EmitConditionalSelect(code, ctx, inst, 64); } void EmitX64::EmitLogicalShiftLeft32(EmitContext& ctx, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; // TODO: Consider using BMI2 instructions like SHLX when arm-in-host flags is implemented. if (!carry_inst) { if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); u8 shift = shift_arg.GetImmediateU8(); if (shift <= 31) { code->shl(result, shift); } else { code->xor_(result, result); } ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 zero = ctx.reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHL instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shl(result, code->cl); code->xor_(zero, zero); code->cmp(code->cl, 32); code->cmovnb(result, zero); ctx.reg_alloc.DefineValue(inst, result); } } else { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->bt(carry.cvt32(), 0); code->shl(result, shift); code->setc(carry.cvt8()); } else if (shift > 32) { code->xor_(result, result); code->xor_(carry, carry); } else { code->mov(carry, result); code->xor_(result, result); code->and_(carry, 1); } ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(code->cl, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF < 32) { code->bt(carry.cvt32(), 0); // Set the carry flag for correct behaviour in the case when Rs & 0xFF == 0 code->shl(result, code->cl); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->mov(carry, result); code->and_(carry, 1); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } } } void EmitX64::EmitLogicalShiftLeft64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; if (shift_arg.IsImmediate()) { Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); u8 shift = shift_arg.GetImmediateU8(); if (shift < 64) { code->shl(result, shift); } else { code->xor_(result.cvt32(), result.cvt32()); } ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); Xbyak::Reg64 zero = ctx.reg_alloc.ScratchGpr(); // The x64 SHL instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shl(result, code->cl); code->xor_(zero.cvt32(), zero.cvt32()); code->cmp(code->cl, 64); code->cmovnb(result, zero); ctx.reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitLogicalShiftRight32(EmitContext& ctx, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; if (!carry_inst) { if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); u8 shift = shift_arg.GetImmediateU8(); if (shift <= 31) { code->shr(result, shift); } else { code->xor_(result, result); } ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 zero = ctx.reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shr(result, code->cl); code->xor_(zero, zero); code->cmp(code->cl, 32); code->cmovnb(result, zero); ctx.reg_alloc.DefineValue(inst, result); } } else { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->shr(result, shift); code->setc(carry.cvt8()); } else if (shift == 32) { code->bt(result, 31); code->setc(carry.cvt8()); code->mov(result, 0); } else { code->xor_(result, result); code->xor_(carry, carry); } ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(code->cl, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF == 0) goto end; code->test(code->cl, code->cl); code->jz(".end"); // if (Rs & 0xFF < 32) { code->shr(result, code->cl); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->bt(result, 31); code->setc(carry.cvt8()); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } } } void EmitX64::EmitLogicalShiftRight64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; if (shift_arg.IsImmediate()) { Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); u8 shift = shift_arg.GetImmediateU8(); if (shift < 64) { code->shr(result, shift); } else { code->xor_(result.cvt32(), result.cvt32()); } ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); Xbyak::Reg64 zero = ctx.reg_alloc.ScratchGpr(); // The x64 SHR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shr(result, code->cl); code->xor_(zero.cvt32(), zero.cvt32()); code->cmp(code->cl, 64); code->cmovnb(result, zero); ctx.reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitArithmeticShiftRight32(EmitContext& ctx, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; if (!carry_inst) { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); code->sar(result, u8(shift < 31 ? shift : 31)); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.UseScratch(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 const31 = ctx.reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SAR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count. // We note that all shift values above 31 have the same behaviour as 31 does, so we saturate `shift` to 31. code->mov(const31, 31); code->movzx(code->ecx, code->cl); code->cmp(code->ecx, u32(31)); code->cmovg(code->ecx, const31); code->sar(result, code->cl); ctx.reg_alloc.DefineValue(inst, result); } } else { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt8(); if (shift == 0) { // There is nothing more to do. } else if (shift <= 31) { code->sar(result, shift); code->setc(carry); } else { code->sar(result, 31); code->bt(result, 31); code->setc(carry); } ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt8(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(code->cl, u32(31)); code->ja(".Rs_gt31"); // if (Rs & 0xFF == 0) goto end; code->test(code->cl, code->cl); code->jz(".end"); // if (Rs & 0xFF <= 31) { code->sar(result, code->cl); code->setc(carry); code->jmp(".end"); // } else if (Rs & 0xFF > 31) { code->L(".Rs_gt31"); code->sar(result, 31); // 31 produces the same results as anything above 31 code->bt(result, 31); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } } } void EmitX64::EmitArithmeticShiftRight64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); code->sar(result, u8(shift < 63 ? shift : 63)); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.UseScratch(shift_arg, HostLoc::RCX); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); Xbyak::Reg64 const63 = ctx.reg_alloc.ScratchGpr(); // The 64-bit x64 SAR instruction masks the shift count by 0x3F before performing the shift. // ARM differs from the behaviour: It does not mask the count. // We note that all shift values above 63 have the same behaviour as 63 does, so we saturate `shift` to 63. code->mov(const63, 63); code->movzx(code->ecx, code->cl); code->cmp(code->ecx, u32(63)); code->cmovg(code->ecx, const63); code->sar(result, code->cl); ctx.reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitRotateRight32(EmitContext& ctx, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; if (!carry_inst) { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); code->ror(result, u8(shift & 0x1F)); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); // x64 ROR instruction does (shift & 0x1F) for us. code->ror(result, code->cl); ctx.reg_alloc.DefineValue(inst, result); } } else { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt8(); if (shift == 0) { // There is nothing more to do. } else if ((shift & 0x1F) == 0) { code->bt(result, u8(31)); code->setc(carry); } else { code->ror(result, shift); code->setc(carry); } ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.UseScratch(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = ctx.reg_alloc.UseScratchGpr(carry_arg).cvt8(); // TODO: Optimize code->inLocalLabel(); // if (Rs & 0xFF == 0) goto end; code->test(code->cl, code->cl); code->jz(".end"); code->and_(code->ecx, u32(0x1F)); code->jz(".zero_1F"); // if (Rs & 0x1F != 0) { code->ror(result, code->cl); code->setc(carry); code->jmp(".end"); // } else { code->L(".zero_1F"); code->bt(result, u8(31)); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); ctx.reg_alloc.DefineValue(inst, result); } } } void EmitX64::EmitRotateRight64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); code->ror(result, u8(shift & 0x3F)); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(operand_arg); // x64 ROR instruction does (shift & 0x3F) for us. code->ror(result, code->cl); ctx.reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitRotateRightExtended(EmitContext& ctx, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg8 carry = ctx.reg_alloc.UseScratchGpr(args[1]).cvt8(); code->bt(carry.cvt32(), 0); code->rcr(result, 1); if (carry_inst) { code->setc(carry); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); } ctx.reg_alloc.DefineValue(inst, result); } const Xbyak::Reg64 INVALID_REG = Xbyak::Reg64(-1); static Xbyak::Reg8 DoCarry(RegAlloc& reg_alloc, Argument& carry_in, IR::Inst* carry_out) { if (carry_in.IsImmediate()) { return carry_out ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8(); } else { return carry_out ? reg_alloc.UseScratchGpr(carry_in).cvt8() : reg_alloc.UseGpr(carry_in).cvt8(); } } static Xbyak::Reg64 DoNZCV(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* nzcv_out) { if (!nzcv_out) return INVALID_REG; Xbyak::Reg64 nzcv = reg_alloc.ScratchGpr({HostLoc::RAX}); code->xor_(nzcv.cvt32(), nzcv.cvt32()); return nzcv; } static void EmitAdd(BlockOfCode* code, EmitContext& ctx, IR::Inst* inst, int bitsize) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto nzcv_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetNZCVFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& carry_in = args[2]; Xbyak::Reg64 nzcv = DoNZCV(code, ctx.reg_alloc, nzcv_inst); Xbyak::Reg result = ctx.reg_alloc.UseScratchGpr(args[0]).changeBit(bitsize); Xbyak::Reg8 carry = DoCarry(ctx.reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? ctx.reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. if (args[1].IsImmediate() && args[1].GetType() == IR::Type::U32) { u32 op_arg = args[1].GetImmediateU32(); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->stc(); code->adc(result, op_arg); } else { code->add(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, op_arg); } } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(bitsize); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->stc(); code->adc(result, *op_arg); } else { code->add(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, *op_arg); } } if (nzcv_inst) { code->lahf(); code->seto(code->al); ctx.reg_alloc.DefineValue(nzcv_inst, nzcv); ctx.EraseInstruction(nzcv_inst); } if (carry_inst) { code->setc(carry); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); } if (overflow_inst) { code->seto(overflow); ctx.reg_alloc.DefineValue(overflow_inst, overflow); ctx.EraseInstruction(overflow_inst); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitAdd32(EmitContext& ctx, IR::Inst* inst) { EmitAdd(code, ctx, inst, 32); } void EmitX64::EmitAdd64(EmitContext& ctx, IR::Inst* inst) { EmitAdd(code, ctx, inst, 64); } static void EmitSub(BlockOfCode* code, EmitContext& ctx, IR::Inst* inst, int bitsize) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto nzcv_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetNZCVFromOp); auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& carry_in = args[2]; Xbyak::Reg64 nzcv = DoNZCV(code, ctx.reg_alloc, nzcv_inst); Xbyak::Reg result = ctx.reg_alloc.UseScratchGpr(args[0]).changeBit(bitsize); Xbyak::Reg8 carry = DoCarry(ctx.reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? ctx.reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. // TODO: Optimize CMP case. // Note that x64 CF is inverse of what the ARM carry flag is here. if (args[1].IsImmediate() && args[1].GetType() == IR::Type::U32) { u32 op_arg = args[1].GetImmediateU32(); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->sub(result, op_arg); } else { code->stc(); code->sbb(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, op_arg); } } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(bitsize); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->sub(result, *op_arg); } else { code->stc(); code->sbb(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, *op_arg); } } if (nzcv_inst) { code->cmc(); code->lahf(); code->seto(code->al); ctx.reg_alloc.DefineValue(nzcv_inst, nzcv); ctx.EraseInstruction(nzcv_inst); } if (carry_inst) { code->setnc(carry); ctx.reg_alloc.DefineValue(carry_inst, carry); ctx.EraseInstruction(carry_inst); } if (overflow_inst) { code->seto(overflow); ctx.reg_alloc.DefineValue(overflow_inst, overflow); ctx.EraseInstruction(overflow_inst); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSub32(EmitContext& ctx, IR::Inst* inst) { EmitSub(code, ctx, inst, 32); } void EmitX64::EmitSub64(EmitContext& ctx, IR::Inst* inst) { EmitSub(code, ctx, inst, 64); } void EmitX64::EmitMul32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { code->imul(result, result, args[1].GetImmediateU32()); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->imul(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitMul64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); code->imul(result, *op_arg); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitAnd32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); code->and_(result, op_arg); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->and_(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitAnd64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); if (args[1].FitsInImmediateS32()) { u32 op_arg = u32(args[1].GetImmediateS32()); code->and_(result, op_arg); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(64); code->and_(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitEor32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); code->xor_(result, op_arg); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->xor_(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitEor64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); if (args[1].FitsInImmediateS32()) { u32 op_arg = u32(args[1].GetImmediateS32()); code->xor_(result, op_arg); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(64); code->xor_(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitOr32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); code->or_(result, op_arg); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->or_(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitOr64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); if (args[1].FitsInImmediateS32()) { u32 op_arg = u32(args[1].GetImmediateS32()); code->or_(result, op_arg); } else { OpArg op_arg = ctx.reg_alloc.UseOpArg(args[1]); op_arg.setBit(64); code->or_(result, *op_arg); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitNot32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result; if (args[0].IsImmediate()) { result = ctx.reg_alloc.ScratchGpr().cvt32(); code->mov(result, u32(~args[0].GetImmediateU32())); } else { result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code->not_(result); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitNot64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result; if (args[0].IsImmediate()) { result = ctx.reg_alloc.ScratchGpr(); code->mov(result, ~args[0].GetImmediateU64()); } else { result = ctx.reg_alloc.UseScratchGpr(args[0]); code->not_(result); } ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendByteToWord(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movsx(result.cvt32(), result.cvt8()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendHalfToWord(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movsx(result.cvt32(), result.cvt16()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendByteToLong(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movsx(result.cvt64(), result.cvt8()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendHalfToLong(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movsx(result.cvt64(), result.cvt16()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendWordToLong(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movsxd(result.cvt64(), result.cvt32()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendByteToWord(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movzx(result.cvt32(), result.cvt8()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendHalfToWord(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movzx(result.cvt32(), result.cvt16()); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendByteToLong(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movzx(result.cvt32(), result.cvt8()); // x64 zeros upper 32 bits on a 32-bit move ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendHalfToLong(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->movzx(result.cvt32(), result.cvt16()); // x64 zeros upper 32 bits on a 32-bit move ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendWordToLong(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->mov(result.cvt32(), result.cvt32()); // x64 zeros upper 32 bits on a 32-bit move ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendLongToQuad(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsInGpr()) { // We let the register allocator automatically zero extend this when necessary ctx.reg_alloc.DefineValue(inst, args[0]); } else { Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]); code->movq(result, result); ctx.reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitByteReverseWord(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code->bswap(result); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitByteReverseHalf(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg16 result = ctx.reg_alloc.UseScratchGpr(args[0]).cvt16(); code->rol(result, 8); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitByteReverseDual(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = ctx.reg_alloc.UseScratchGpr(args[0]); code->bswap(result); ctx.reg_alloc.DefineValue(inst, result); } void EmitX64::EmitCountLeadingZeros32(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (code->DoesCpuSupport(Xbyak::util::Cpu::tLZCNT)) { Xbyak::Reg32 source = ctx.reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code->lzcnt(result, source); ctx.reg_alloc.DefineValue(inst, result); } else { Xbyak::Reg32 source = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); // The result of a bsr of zero is undefined, but zf is set after it. code->bsr(result, source); code->mov(source, 0xFFFFFFFF); code->cmovz(result, source); code->neg(result); code->add(result, 31); ctx.reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitCountLeadingZeros64(EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (code->DoesCpuSupport(Xbyak::util::Cpu::tLZCNT)) { Xbyak::Reg64 source = ctx.reg_alloc.UseGpr(args[0]).cvt64(); Xbyak::Reg64 result = ctx.reg_alloc.ScratchGpr().cvt64(); code->lzcnt(result, source); ctx.reg_alloc.DefineValue(inst, result); } else { Xbyak::Reg64 source = ctx.reg_alloc.UseScratchGpr(args[0]).cvt64(); Xbyak::Reg64 result = ctx.reg_alloc.ScratchGpr().cvt64(); // The result of a bsr of zero is undefined, but zf is set after it. code->bsr(result, source); code->mov(source.cvt32(), 0xFFFFFFFF); code->cmovz(result.cvt32(), source.cvt32()); code->neg(result.cvt32()); code->add(result.cvt32(), 63); ctx.reg_alloc.DefineValue(inst, result); } } } // namespace BackendX64 } // namespace Dynarmic