/* This file is part of the dynarmic project. * Copyright (c) 2022 MerryMage * SPDX-License-Identifier: 0BSD */ #include #include #include #include #include #include #include #include #include "./A32/testenv.h" #include "./fuzz_util.h" #include "./rand_int.h" #include "dynarmic/common/fp/fpcr.h" #include "dynarmic/common/fp/fpsr.h" #include "dynarmic/frontend/A32/ITState.h" #include "dynarmic/frontend/A32/a32_location_descriptor.h" #include "dynarmic/frontend/A32/a32_types.h" #include "dynarmic/frontend/A32/translate/a32_translate.h" #include "dynarmic/interface/A32/a32.h" #include "dynarmic/ir/basic_block.h" #include "dynarmic/ir/location_descriptor.h" #include "dynarmic/ir/opcodes.h" // Must be declared last for all necessary operator<< to be declared prior to this. #include #include constexpr bool mask_fpsr_cum_bits = true; namespace { using namespace Dynarmic; bool ShouldTestInst(u32 instruction, u32 pc, bool is_thumb, bool is_last_inst, A32::ITState it_state = {}) { const A32::LocationDescriptor location = A32::LocationDescriptor{pc, {}, {}}.SetTFlag(is_thumb).SetIT(it_state); IR::Block block{location}; const bool should_continue = A32::TranslateSingleInstruction(block, location, instruction); if (!should_continue && !is_last_inst) { return false; } if (auto terminal = block.GetTerminal(); boost::get(&terminal)) { return false; } for (const auto& ir_inst : block) { switch (ir_inst.GetOpcode()) { case IR::Opcode::A32GetFpscr: case IR::Opcode::A32ExceptionRaised: case IR::Opcode::A32CallSupervisor: case IR::Opcode::A32CoprocInternalOperation: case IR::Opcode::A32CoprocSendOneWord: case IR::Opcode::A32CoprocSendTwoWords: case IR::Opcode::A32CoprocGetOneWord: case IR::Opcode::A32CoprocGetTwoWords: case IR::Opcode::A32CoprocLoadWords: case IR::Opcode::A32CoprocStoreWords: // Half-precision case IR::Opcode::FPVectorAbs16: case IR::Opcode::FPVectorEqual16: case IR::Opcode::FPVectorMulAdd16: case IR::Opcode::FPVectorNeg16: case IR::Opcode::FPVectorRecipEstimate16: case IR::Opcode::FPVectorRecipStepFused16: case IR::Opcode::FPVectorRoundInt16: case IR::Opcode::FPVectorRSqrtEstimate16: case IR::Opcode::FPVectorRSqrtStepFused16: case IR::Opcode::FPVectorToSignedFixed16: case IR::Opcode::FPVectorToUnsignedFixed16: case IR::Opcode::FPVectorFromHalf32: case IR::Opcode::FPVectorToHalf32: return false; default: continue; } } return true; } u32 GenRandomArmInst(u32 pc, bool is_last_inst) { static const struct InstructionGeneratorInfo { std::vector generators; std::vector invalid; } instructions = [] { const std::vector> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/arm.inc" #include "dynarmic/frontend/A32/decoder/asimd.inc" #include "dynarmic/frontend/A32/decoder/vfp.inc" #undef INST }; std::vector generators; std::vector invalid; // List of instructions not to test static constexpr std::array do_not_test{ // Translating load/stores "arm_LDRBT", "arm_LDRBT", "arm_LDRHT", "arm_LDRHT", "arm_LDRSBT", "arm_LDRSBT", "arm_LDRSHT", "arm_LDRSHT", "arm_LDRT", "arm_LDRT", "arm_STRBT", "arm_STRBT", "arm_STRHT", "arm_STRHT", "arm_STRT", "arm_STRT", // Exclusive load/stores "arm_LDREXB", "arm_LDREXD", "arm_LDREXH", "arm_LDREX", "arm_LDAEXB", "arm_LDAEXD", "arm_LDAEXH", "arm_LDAEX", "arm_STREXB", "arm_STREXD", "arm_STREXH", "arm_STREX", "arm_STLEXB", "arm_STLEXD", "arm_STLEXH", "arm_STLEX", "arm_SWP", "arm_SWPB", // Elevated load/store multiple instructions. "arm_LDM_eret", "arm_LDM_usr", "arm_STM_usr", // Coprocessor "arm_CDP", "arm_LDC", "arm_MCR", "arm_MCRR", "arm_MRC", "arm_MRRC", "arm_STC", // System "arm_CPS", "arm_RFE", "arm_SRS", // Undefined "arm_UDF", // FPSCR is inaccurate "vfp_VMRS", // Incorrect Unicorn implementations "asimd_VRECPS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "asimd_VRSQRTS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "vfp_VCVT_from_fixed", // Unicorn does not do round-to-nearest-even for this instruction correctly. }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); if ((instructions.generators[index].Mask() & 0xF0000000) == 0 && (inst & 0xF0000000) == 0xF0000000) { continue; } if (ShouldTestInst(inst, pc, false, is_last_inst)) { return inst; } } } std::vector GenRandomThumbInst(u32 pc, bool is_last_inst, A32::ITState it_state = {}) { static const struct InstructionGeneratorInfo { std::vector generators; std::vector invalid; } instructions = [] { const std::vector> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/thumb16.inc" #include "dynarmic/frontend/A32/decoder/thumb32.inc" #undef INST }; const std::vector> vfp_list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/vfp.inc" #undef INST }; const std::vector> asimd_list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/asimd.inc" #undef INST }; std::vector generators; std::vector invalid; // List of instructions not to test static constexpr std::array do_not_test{ "thumb16_BKPT", "thumb16_IT", // Exclusive load/stores "thumb32_LDREX", "thumb32_LDREXB", "thumb32_LDREXD", "thumb32_LDREXH", "thumb32_STREX", "thumb32_STREXB", "thumb32_STREXD", "thumb32_STREXH", // Coprocessor "thumb32_CDP", "thumb32_LDC", "thumb32_MCR", "thumb32_MCRR", "thumb32_MRC", "thumb32_MRRC", "thumb32_STC", }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } for (const auto& [fn, bs] : vfp_list) { std::string bitstring = bs; if (bitstring.substr(0, 4) == "cccc" || bitstring.substr(0, 4) == "----") { bitstring.replace(0, 4, "1110"); } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring.c_str()}); continue; } generators.emplace_back(InstructionGenerator{bitstring.c_str()}); } for (const auto& [fn, bs] : asimd_list) { std::string bitstring = bs; if (bitstring.substr(0, 7) == "1111001") { const char U = bitstring[7]; bitstring.replace(0, 8, "111-1111"); bitstring[3] = U; } else if (bitstring.substr(0, 8) == "11110100") { bitstring.replace(0, 8, "11111001"); } else { ASSERT_FALSE("Unhandled ASIMD instruction: {} {}", fn, bs); } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring.c_str()}); continue; } generators.emplace_back(InstructionGenerator{bitstring.c_str()}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); const bool is_four_bytes = (inst >> 16) != 0; if (ShouldTestInst(is_four_bytes ? mcl::bit::swap_halves_32(inst) : inst, pc, true, is_last_inst, it_state)) { if (is_four_bytes) return {static_cast(inst >> 16), static_cast(inst)}; return {static_cast(inst)}; } } } template Dynarmic::A32::UserConfig GetUserConfig(TestEnv& testenv) { Dynarmic::A32::UserConfig user_config; user_config.optimizations &= ~OptimizationFlag::FastDispatch; user_config.callbacks = &testenv; return user_config; } template static void RunTestInstance(Dynarmic::A32::Jit& jit, TestEnv& jit_env, const std::array& regs, const std::array& vecs, const std::vector& instructions, const u32 cpsr, const u32 fpscr, const size_t ticks_left) { const u32 initial_pc = regs[15]; const u32 num_words = initial_pc / sizeof(typename TestEnv::InstructionType); const u32 code_mem_size = num_words + static_cast(instructions.size()); jit.ClearCache(); for (size_t jit_rerun_count = 0; jit_rerun_count < num_jit_reruns; ++jit_rerun_count) { jit_env.code_mem.resize(code_mem_size); std::fill(jit_env.code_mem.begin(), jit_env.code_mem.end(), TestEnv::infinite_loop); std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + num_words); jit_env.PadCodeMem(); jit_env.modified_memory.clear(); jit_env.interrupts.clear(); jit.Regs() = regs; jit.ExtRegs() = vecs; jit.SetFpscr(fpscr); jit.SetCpsr(cpsr); jit_env.ticks_left = ticks_left; jit.Run(); } fmt::print("instructions: "); for (auto instruction : instructions) { if constexpr (sizeof(decltype(instruction)) == 2) { fmt::print("{:04x} ", instruction); } else { fmt::print("{:08x} ", instruction); } } fmt::print("\n"); fmt::print("initial_regs: "); for (u32 i : regs) { fmt::print("{:08x} ", i); } fmt::print("\n"); fmt::print("initial_vecs: "); for (u32 i : vecs) { fmt::print("{:08x} ", i); } fmt::print("\n"); fmt::print("initial_cpsr: {:08x}\n", cpsr); fmt::print("initial_fpcr: {:08x}\n", fpscr); fmt::print("final_regs: "); for (u32 i : jit.Regs()) { fmt::print("{:08x} ", i); } fmt::print("\n"); fmt::print("final_vecs: "); for (u32 i : jit.ExtRegs()) { fmt::print("{:08x} ", i); } fmt::print("\n"); fmt::print("final_cpsr: {:08x}\n", jit.Cpsr()); fmt::print("final_fpsr: {:08x}\n", mask_fpsr_cum_bits ? jit.Fpscr() & 0xffffff00 : jit.Fpscr()); fmt::print("mod_mem: "); for (auto [addr, value] : jit_env.modified_memory) { fmt::print("{:08x}:{:02x} ", addr, value); } fmt::print("\n"); fmt::print("interrupts:\n"); for (const auto& i : jit_env.interrupts) { std::puts(i.c_str()); } fmt::print("===\n"); } } // Anonymous namespace void TestThumb(size_t num_instructions, size_t num_iterations) { ThumbTestEnv jit_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; std::array regs; std::array ext_reg; std::vector instructions; for (size_t iteration = 0; iteration < num_iterations; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28) | 0x1F0; const u32 fpcr = RandomFpcr(); instructions.clear(); for (size_t i = 0; i < num_instructions; ++i) { const auto inst = GenRandomThumbInst(static_cast(start_address + 2 * instructions.size()), i == num_instructions - 1); instructions.insert(instructions.end(), inst.begin(), inst.end()); } regs[15] = start_address; RunTestInstance(jit, jit_env, regs, ext_reg, instructions, cpsr, fpcr, num_instructions); } } void TestArm(size_t num_instructions, size_t num_iterations) { ArmTestEnv jit_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; std::array regs; std::array ext_reg; std::vector instructions; for (size_t iteration = 0; iteration < num_iterations; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28); const u32 fpcr = RandomFpcr(); instructions.clear(); for (size_t i = 0; i < num_instructions; ++i) { instructions.emplace_back(GenRandomArmInst(static_cast(start_address + 4 * instructions.size()), i == num_instructions - 1)); } regs[15] = start_address; RunTestInstance(jit, jit_env, regs, ext_reg, instructions, cpsr, fpcr, 1); } } int main(int, char*[]) { detail::g_rand_int_generator.seed(42069); TestThumb(1, 100000); TestArm(1, 100000); TestThumb(5, 100000); TestArm(5, 100000); TestThumb(1024, 10000); TestArm(1024, 10000); return 0; }