/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include "common/assert.h" #include "frontend/ir/ir_emitter.h" #include "frontend/ir/opcodes.h" namespace Dynarmic { namespace IR { void IREmitter::Unimplemented() { } u32 IREmitter::PC() { u32 offset = current_location.TFlag() ? 4 : 8; return current_location.PC() + offset; } u32 IREmitter::AlignPC(size_t alignment) { u32 pc = PC(); return static_cast(pc - pc % alignment); } Value IREmitter::Imm1(bool imm1) { return Value(imm1); } Value IREmitter::Imm8(u8 imm8) { return Value(imm8); } Value IREmitter::Imm32(u32 imm32) { return Value(imm32); } Value IREmitter::GetRegister(Arm::Reg reg) { if (reg == Arm::Reg::PC) { return Imm32(PC()); } return Inst(Opcode::GetRegister, { Value(reg) }); } Value IREmitter::GetExtendedRegister(Arm::ExtReg reg) { if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { return Inst(Opcode::GetExtendedRegister32, {Value(reg)}); } else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { return Inst(Opcode::GetExtendedRegister64, {Value(reg)}); } else { ASSERT_MSG(false, "Invalid reg."); } } void IREmitter::SetRegister(const Arm::Reg reg, const Value& value) { ASSERT(reg != Arm::Reg::PC); Inst(Opcode::SetRegister, { Value(reg), value }); } void IREmitter::SetExtendedRegister(const Arm::ExtReg reg, const Value& value) { if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { Inst(Opcode::SetExtendedRegister32, {Value(reg), value}); } else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { Inst(Opcode::SetExtendedRegister64, {Value(reg), value}); } else { ASSERT_MSG(false, "Invalid reg."); } } void IREmitter::ALUWritePC(const Value& value) { // This behaviour is ARM version-dependent. // The below implementation is for ARMv6k BranchWritePC(value); } void IREmitter::BranchWritePC(const Value& value) { if (!current_location.TFlag()) { auto new_pc = And(value, Imm32(0xFFFFFFFC)); Inst(Opcode::SetRegister, { Value(Arm::Reg::PC), new_pc }); } else { auto new_pc = And(value, Imm32(0xFFFFFFFE)); Inst(Opcode::SetRegister, { Value(Arm::Reg::PC), new_pc }); } } void IREmitter::BXWritePC(const Value& value) { Inst(Opcode::BXWritePC, {value}); } void IREmitter::LoadWritePC(const Value& value) { // This behaviour is ARM version-dependent. // The below implementation is for ARMv6k BXWritePC(value); } void IREmitter::CallSupervisor(const Value& value) { Inst(Opcode::CallSupervisor, {value}); } void IREmitter::PushRSB(const LocationDescriptor& return_location) { Inst(Opcode::PushRSB, {Value(return_location.UniqueHash())}); } Value IREmitter::GetCpsr() { return Inst(Opcode::GetCpsr, {}); } void IREmitter::SetCpsr(const Value& value) { Inst(Opcode::SetCpsr, {value}); } Value IREmitter::GetCFlag() { return Inst(Opcode::GetCFlag, {}); } void IREmitter::SetNFlag(const Value& value) { Inst(Opcode::SetNFlag, {value}); } void IREmitter::SetZFlag(const Value& value) { Inst(Opcode::SetZFlag, {value}); } void IREmitter::SetCFlag(const Value& value) { Inst(Opcode::SetCFlag, {value}); } void IREmitter::SetVFlag(const Value& value) { Inst(Opcode::SetVFlag, {value}); } void IREmitter::OrQFlag(const Value& value) { Inst(Opcode::OrQFlag, {value}); } Value IREmitter::GetFpscr() { return Inst(Opcode::GetFpscr, {}); } void IREmitter::SetFpscr(const Value& new_fpscr) { Inst(Opcode::SetFpscr, {new_fpscr}); } Value IREmitter::GetFpscrNZCV() { return Inst(Opcode::GetFpscrNZCV, {}); } void IREmitter::SetFpscrNZCV(const Value& new_fpscr_nzcv) { Inst(Opcode::SetFpscrNZCV, {new_fpscr_nzcv}); } Value IREmitter::Pack2x32To1x64(const Value& lo, const Value& hi) { return Inst(Opcode::Pack2x32To1x64, {lo, hi}); } Value IREmitter::LeastSignificantWord(const Value& value) { return Inst(Opcode::LeastSignificantWord, {value}); } IREmitter::ResultAndCarry IREmitter::MostSignificantWord(const Value& value) { auto result = Inst(Opcode::MostSignificantWord, {value}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } Value IREmitter::LeastSignificantHalf(const Value& value) { return Inst(Opcode::LeastSignificantHalf, {value}); } Value IREmitter::LeastSignificantByte(const Value& value) { return Inst(Opcode::LeastSignificantByte, {value}); } Value IREmitter::MostSignificantBit(const Value& value) { return Inst(Opcode::MostSignificantBit, {value}); } Value IREmitter::IsZero(const Value& value) { return Inst(Opcode::IsZero, {value}); } Value IREmitter::IsZero64(const Value& value) { return Inst(Opcode::IsZero64, {value}); } IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(const Value& value_in, const Value& shift_amount, const Value& carry_in) { auto result = Inst(Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) { auto result = Inst(Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } Value IREmitter::LogicalShiftRight64(const Value& value_in, const Value& shift_amount) { return Inst(Opcode::LogicalShiftRight64, {value_in, shift_amount}); } IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) { auto result = Inst(Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarry IREmitter::RotateRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) { auto result = Inst(Opcode::RotateRight, {value_in, shift_amount, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarry IREmitter::RotateRightExtended(const Value& value_in, const Value& carry_in) { auto result = Inst(Opcode::RotateRightExtended, {value_in, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(const Value& a, const Value& b, const Value& carry_in) { auto result = Inst(Opcode::AddWithCarry, {a, b, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); auto overflow = Inst(Opcode::GetOverflowFromOp, {result}); return {result, carry_out, overflow}; } Value IREmitter::Add(const Value& a, const Value& b) { return Inst(Opcode::AddWithCarry, {a, b, Imm1(0)}); } Value IREmitter::Add64(const Value& a, const Value& b) { return Inst(Opcode::Add64, {a, b}); } IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(const Value& a, const Value& b, const Value& carry_in) { // This is equivalent to AddWithCarry(a, Not(b), carry_in). auto result = Inst(Opcode::SubWithCarry, {a, b, carry_in}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result}); auto overflow = Inst(Opcode::GetOverflowFromOp, {result}); return {result, carry_out, overflow}; } Value IREmitter::Sub(const Value& a, const Value& b) { return Inst(Opcode::SubWithCarry, {a, b, Imm1(1)}); } Value IREmitter::Sub64(const Value& a, const Value& b) { return Inst(Opcode::Sub64, {a, b}); } Value IREmitter::Mul(const Value& a, const Value& b) { return Inst(Opcode::Mul, {a, b}); } Value IREmitter::Mul64(const Value& a, const Value& b) { return Inst(Opcode::Mul64, {a, b}); } Value IREmitter::And(const Value& a, const Value& b) { return Inst(Opcode::And, {a, b}); } Value IREmitter::Eor(const Value& a, const Value& b) { return Inst(Opcode::Eor, {a, b}); } Value IREmitter::Or(const Value& a, const Value& b) { return Inst(Opcode::Or, {a, b}); } Value IREmitter::Not(const Value& a) { return Inst(Opcode::Not, {a}); } Value IREmitter::SignExtendWordToLong(const Value& a) { return Inst(Opcode::SignExtendWordToLong, {a}); } Value IREmitter::SignExtendHalfToWord(const Value& a) { return Inst(Opcode::SignExtendHalfToWord, {a}); } Value IREmitter::SignExtendByteToWord(const Value& a) { return Inst(Opcode::SignExtendByteToWord, {a}); } Value IREmitter::ZeroExtendWordToLong(const Value& a) { return Inst(Opcode::ZeroExtendWordToLong, {a}); } Value IREmitter::ZeroExtendHalfToWord(const Value& a) { return Inst(Opcode::ZeroExtendHalfToWord, {a}); } Value IREmitter::ZeroExtendByteToWord(const Value& a) { return Inst(Opcode::ZeroExtendByteToWord, {a}); } Value IREmitter::ByteReverseWord(const Value& a) { return Inst(Opcode::ByteReverseWord, {a}); } Value IREmitter::ByteReverseHalf(const Value& a) { return Inst(Opcode::ByteReverseHalf, {a}); } Value IREmitter::ByteReverseDual(const Value& a) { return Inst(Opcode::ByteReverseDual, {a}); } Value IREmitter::PackedSaturatedAddU8(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedAddU8, {a, b}); } Value IREmitter::PackedSaturatedAddS8(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedAddS8, {a, b}); } Value IREmitter::PackedSaturatedSubU8(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedSubU8, {a, b}); } Value IREmitter::PackedSaturatedSubS8(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedSubS8, {a, b}); } Value IREmitter::PackedSaturatedAddU16(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedAddU16, {a, b}); } Value IREmitter::PackedSaturatedAddS16(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedAddS16, {a, b}); } Value IREmitter::PackedSaturatedSubU16(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedSubU16, {a, b}); } Value IREmitter::PackedSaturatedSubS16(const Value& a, const Value& b) { return Inst(Opcode::PackedSaturatedSubS16, {a, b}); } Value IREmitter::TransferToFP32(const Value& a) { return Inst(Opcode::TransferToFP32, {a}); } Value IREmitter::TransferToFP64(const Value& a) { return Inst(Opcode::TransferToFP64, {a}); } Value IREmitter::TransferFromFP32(const Value& a) { return Inst(Opcode::TransferFromFP32, {a}); } Value IREmitter::TransferFromFP64(const Value& a) { return Inst(Opcode::TransferFromFP64, {a}); } Value IREmitter::FPAbs32(const Value& a) { return Inst(Opcode::FPAbs32, {a}); } Value IREmitter::FPAbs64(const Value& a) { return Inst(Opcode::FPAbs64, {a}); } Value IREmitter::FPAdd32(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPAdd32, {a, b}); } Value IREmitter::FPAdd64(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPAdd64, {a, b}); } Value IREmitter::FPDiv32(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPDiv32, {a, b}); } Value IREmitter::FPDiv64(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPDiv64, {a, b}); } Value IREmitter::FPMul32(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPMul32, {a, b}); } Value IREmitter::FPMul64(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPMul64, {a, b}); } Value IREmitter::FPNeg32(const Value& a) { return Inst(Opcode::FPNeg32, {a}); } Value IREmitter::FPNeg64(const Value& a) { return Inst(Opcode::FPNeg64, {a}); } Value IREmitter::FPSqrt32(const Value& a) { return Inst(Opcode::FPSqrt32, {a}); } Value IREmitter::FPSqrt64(const Value& a) { return Inst(Opcode::FPSqrt64, {a}); } Value IREmitter::FPSub32(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPSub32, {a, b}); } Value IREmitter::FPSub64(const Value& a, const Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPSub64, {a, b}); } Value IREmitter::FPDoubleToSingle(const Value& a, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPDoubleToSingle, {a}); } Value IREmitter::FPSingleToDouble(const Value& a, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPSingleToDouble, {a}); } Value IREmitter::FPSingleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPSingleToS32, {a, Imm1(round_towards_zero)}); } Value IREmitter::FPSingleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPSingleToU32, {a, Imm1(round_towards_zero)}); } Value IREmitter::FPDoubleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPDoubleToS32, {a, Imm1(round_towards_zero)}); } Value IREmitter::FPDoubleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPDoubleToU32, {a, Imm1(round_towards_zero)}); } Value IREmitter::FPS32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPS32ToSingle, {a, Imm1(round_to_nearest)}); } Value IREmitter::FPU32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPU32ToSingle, {a, Imm1(round_to_nearest)}); } Value IREmitter::FPS32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPS32ToDouble, {a, Imm1(round_to_nearest)}); } Value IREmitter::FPU32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(Opcode::FPU32ToDouble, {a, Imm1(round_to_nearest)}); } void IREmitter::ClearExclusive() { Inst(Opcode::ClearExclusive, {}); } void IREmitter::SetExclusive(const Value& vaddr, size_t byte_size) { ASSERT(byte_size == 1 || byte_size == 2 || byte_size == 4 || byte_size == 8 || byte_size == 16); Inst(Opcode::SetExclusive, {vaddr, Imm8(u8(byte_size))}); } Value IREmitter::ReadMemory8(const Value& vaddr) { return Inst(Opcode::ReadMemory8, {vaddr}); } Value IREmitter::ReadMemory16(const Value& vaddr) { auto value = Inst(Opcode::ReadMemory16, {vaddr}); return current_location.EFlag() ? ByteReverseHalf(value) : value; } Value IREmitter::ReadMemory32(const Value& vaddr) { auto value = Inst(Opcode::ReadMemory32, {vaddr}); return current_location.EFlag() ? ByteReverseWord(value) : value; } Value IREmitter::ReadMemory64(const Value& vaddr) { auto value = Inst(Opcode::ReadMemory64, {vaddr}); return current_location.EFlag() ? ByteReverseDual(value) : value; } void IREmitter::WriteMemory8(const Value& vaddr, const Value& value) { Inst(Opcode::WriteMemory8, {vaddr, value}); } void IREmitter::WriteMemory16(const Value& vaddr, const Value& value) { if (current_location.EFlag()) { auto v = ByteReverseHalf(value); Inst(Opcode::WriteMemory16, {vaddr, v}); } else { Inst(Opcode::WriteMemory16, {vaddr, value}); } } void IREmitter::WriteMemory32(const Value& vaddr, const Value& value) { if (current_location.EFlag()) { auto v = ByteReverseWord(value); Inst(Opcode::WriteMemory32, {vaddr, v}); } else { Inst(Opcode::WriteMemory32, {vaddr, value}); } } void IREmitter::WriteMemory64(const Value& vaddr, const Value& value) { if (current_location.EFlag()) { auto v = ByteReverseDual(value); Inst(Opcode::WriteMemory64, {vaddr, v}); } else { Inst(Opcode::WriteMemory64, {vaddr, value}); } } Value IREmitter::ExclusiveWriteMemory8(const Value& vaddr, const Value& value) { return Inst(Opcode::ExclusiveWriteMemory8, {vaddr, value}); } Value IREmitter::ExclusiveWriteMemory16(const Value& vaddr, const Value& value) { if (current_location.EFlag()) { auto v = ByteReverseHalf(value); return Inst(Opcode::ExclusiveWriteMemory16, {vaddr, v}); } else { return Inst(Opcode::ExclusiveWriteMemory16, {vaddr, value}); } } Value IREmitter::ExclusiveWriteMemory32(const Value& vaddr, const Value& value) { if (current_location.EFlag()) { auto v = ByteReverseWord(value); return Inst(Opcode::ExclusiveWriteMemory32, {vaddr, v}); } else { return Inst(Opcode::ExclusiveWriteMemory32, {vaddr, value}); } } Value IREmitter::ExclusiveWriteMemory64(const Value& vaddr, const Value& value_lo, const Value& value_hi) { if (current_location.EFlag()) { auto vlo = ByteReverseWord(value_lo); auto vhi = ByteReverseWord(value_hi); return Inst(Opcode::ExclusiveWriteMemory64, {vaddr, vlo, vhi}); } else { return Inst(Opcode::ExclusiveWriteMemory64, {vaddr, value_lo, value_hi}); } } void IREmitter::Breakpoint() { Inst(Opcode::Breakpoint, {}); } void IREmitter::SetTerm(const Terminal& terminal) { block.SetTerminal(terminal); } Value IREmitter::Inst(Opcode op, std::initializer_list args) { block.AppendNewInst(op, args); return Value(&block.back()); } } // namespace IR } // namespace Dynarmic